Томсон, определивший заряд и массу электрона, предположил, что именно электроны и есть эти «прачастицы», что из них возникают все атомы, если их объединяет между собой некая сила. В первом варианте этой гипотезы роль связующей силы играла магнитная сила. Но огромная — тысячекратная! — разница масс электрона и атома водорода делала такую гипотезу чрезмерно сложной.
Во второй гипотезе Томсон обращается к электростатической силе, считая, что пространство, в котором собраны электроны, образующие атом, способно действовать так, как если бы оно имело положительный заряд, равный сумме отрицательных зарядов электронов.
Неясность этой гипотезы составляет её основное достоинство — её трудно опровергнуть. Но она не позволяет понять, как устроен атом.
Томсон и другие учёные стремились уточнить эту модель и получили много интересных результатов. Предлагали ещё ряд моделей, но и они, как этого следовало ожидать от любого построения, основанного на гипотезах, не выдерживали проверки опытом. Всё это были симптомы глубокого кризиса физики начала прошлого века.
Трагедия одного из величайших физиков — Больцмана — показывает, как сложно обстояли дела в мире физики. Больцман покончил с собой. Он отчаялся в своей борьбе за материалистическое понимание явлений природы.
Решающий шаг внутрь атома сделал Резерфорд. Он обстрелял мишень из тонкой металлической фольги узким пучком альфа-частиц и… поразился! Наблюдения за дальнейшим поведением альфа-частиц заставили его сделать однозначный вывод: «Положительный заряд, связанный с атомом, сконцентрирован в крошечном центре, в ядре, а компенсирующий отрицательный заряд распределён в сфере с радиусом, сравнимым с радиусом атома».
Расчёты показали, что радиус ядра сравним с величиной, принятой тогда для радиуса электрона, а радиус атома превосходит его примерно в сто тысяч раз и составляет около стомиллионной доли сантиметра.
Так возникла планетарная модель атома: малое тяжёлое положительное ядро, вокруг которого вращаются электроны. Количество электронов таково, что их суммарный заряд компенсирует положительный заряд ядра.
Заряд ядра соответствует номеру элемента в таблице Менделеева. Химические свойства элемента определяются числом и взаимным расположением электронов.
Человеческое мышление склонно к аналогиям. Было ес тественно предположить, что электроны вращаются вокруг ядра, как планеты вокруг Солнца. Это выглядело весьма правдоподобно и просто: большое повторяется в малом.
Всё было хорошо в этой модели. Она могла непротиворечиво объяснить многие явления, но… не могла существовать! Физики сразу заметили неблагополучие в такой привлекательной картине. Солнце и планеты электрически нейтральны, а ядра атомов и электроны — это тела заряженные. И их взаимоотношения совсем иные. Следуя законам электродинамики, отрицательно заряженные электроны, вращаясь вокруг положительного ядра, должны постепенно потерять свою энергию и упасть на него. Но такого явления никто никогда не наблюдал. Если бы электроны атомов вдруг начали падать на ядра, настал бы конец света!
Итак, напрашивался единственный вывод: либо неверны законы электродинамики, либо атомы устроены иначе.
Правильность законов электродинамики не вызывала сомнений. Её подтверждала работа электрических двигателей и генераторов, действие радиотелеграфа, поведение стрелки компаса и многое другое. Кризис физики всё обострялся… Однако развитие науки шло по пути диалектического преодоления внутренних противоречий.
Выход из тупика указал в 1913 году Бор. Его объяснение повергло физиков в недоумение.
Представьте себе реакцию человека, которому сообщили сенсационную новость: в Азии совсем иные законы природы, чем в Европе. В Азии в отличие от Европы деревья растут вверх корнями…
Нечто похожее произошло в среде физиков, когда молодой датский учёный Нильс Бор высказал свою догадку: в микромире не применимы законы макромира. В атоме — другие законы природы, чем вне его. Если в свободном пространстве заряженное тело при движении по окружности теряет энергию, то внутри атома этого не происходит.
Бор утверждал, что электроны в атоме не подчиняются классической электродинамике: могут вращаться на опре делённых стационарных орбитах, не излучая энергии. Излучение происходит только при переходах электронов с одной из стационарных орбит на другую — более близкую к ядру. Тут электрон выстреливает порцию энергии — квант.
Бор на этом не остановился. Он сообразил, что величина излученной электроном энергии пропорциональна расстоянию между орбитами! (Сказанное нельзя понимать буквально: речь идёт не столько о расстоянии между орбитами в пространстве, сколько о различии энергий электрона на этих орбитах. — Прим. В.Г. Сурдина)
Если электрон перелетит недалеко, скажем, на соседнюю орбиту, он излучит маленький квант — красного цвета. А если перескочит на более дальнюю орбиту, то успеет излучить квант побольше — голубого или даже фиолетового цвета.
Бор своим предположением убил сразу двух зайцев: объяснил устойчивость атома и понял секрет цветных линий в спектрах излучения разных веществ.
Так, прибегнув к квантовой теории, он связал свою модель атома с опытными данными, полученными при помощи спектрального анализа. Поняв, почему в спектре каждого атома множество разноцветных линий — они иллюстрируют способность атома излучать кванты тех или иных цветов, — он сумел раскрыть и секрет строения атома, узнать схему расположения орбит, их возможное количество, расстояния между ними и многое другое.
Этот момент очень важен для истории науки.
Веками имея дело со сравнительно большими телами, люди привыкли считать, что энергию можно делить на произвольные порции. Когда оказалось, что в микромире это невозможно, что в атомных масштабах энергия способна существовать только как совокупность определённых порций — квантов — и что величину квантов надо определять с помощью новых, не известных ещё законов, многие физики от этого просто поначалу отмахнулись. Но когда датский фантазёр догадался, что квантовые законы обуславливают устойчивость атома — это, конечно же, не могло не изменить умонастроение даже отъявленных скептиков. Квантовые законы спасают мир от ультрафиолетовой катастрофы, делают атомы надёжнее крепостных стен — это было уже очень серьёзно. И внимание учёных в первой четверти прошлого столетия обращено на Копенгаген, где на большом творческом подъёме Бор и его единомышленники — молодые учёные разных национальностей — пересматривали старые истины и искали новые.
Психологически это был трудный поворот. Учёные, не успев привыкнуть к тому, что вместо непрерывных процессов, подчиняющихся законам классической физики, в природе царствует дискретность, прерывистость, должны были начинать новую жизнь: привыкать к мысли, что в микромире уже нельзя пользоваться формулами классической физики. Нужно выявлять квантовые законы и применять их для исследования микромира.
Недоумение, с которым встретили физики выход из тупика, указанный Бором, перешло в триумфальное шествие, когда Бор, а за ним теоретики Вильсон и Зоммерфельд начали на основе модели Бора рассчитывать спектры атома водорода. Модель позволяла наглядно представить и возникновение Периодического закона, открытого Менделеевым. Однако восторг сменился разочарованием, когда выяснились некоторые тонкие расхождения между расчётными величинами и наблюдаемыми спектрами водорода, а затем оказалось, что модель не позволяет рассчитать спектры более сложных атомов, даже второго по сложности атома — гелия. Возникла горькая поговорка: «Атом Бора это не атом бора, а атом водорода».
Так трагической неудачей закончился период величайших успехов физики начала прошлого века.
Тогда существовала надежда, что удастся построить наглядную и непротиворечивую картину мира, основанную на трёх простейших элементах: протонах — ядрах атома водорода, из которых образуются все ядра, электронах — ответственных за все электрические и химические явления, и фотонах — объясняющих все оптические явления и их связь со строением атома. Все эти надежды рухнули.
После перерыва, вызванного Первой мировой войной, физики вновь принялись за работу. Впрочем, физики старшего поколения, не призванные в армию, и в эти годы продолжали искать порванные нити старых и новых теорий.
В эти годы Эйнштейн трудился над обобщением теории относительности, желая найти в ней место для неравномерных движений, например для падения тел в поле тяготения и для вращательных движений. В 1916 году он достиг решающих успехов, опубликовав ряд работ, развивавших общую теорию относительности и позволявших охватить едиными формулами простые движения, поле тяготения и центробежные силы. Этим Эйнштейн заложил основу несбывшейся мечты всей его дальнейшей жизни — мечты о единой теории, описывающей все известные и ещё не открытые поля.
Одновременно Эйнштейн стремился понять, как можно примирить существование фотонов (частиц света) с такими явлениями, как дифракция и интерференция, свидетельствующими о том, что свет обладает несомненными волновыми свойствами.
Эйнштейна тревожило и то, что отсутствовала связь между механизмом взаимодействия энергии с веществом, понятого Планком (формулой Планка, освободившей науку от призрака ультрафиолетовой катастрофы), и боровской моделью атома, получавшей всё большее экспериментальное подтверждение. Нужно было как-то соединить эти две половины одной медали. Ведь то, что происходит внутри атома и вокруг него, несомненно, части одной картины.
Это оказалось непростым делом.
Эйнштейн нашёл выход. Он использовал и объединил далёкие в то время области — радиоактивность и теорию спектров.
Исследование радиоактивности выявило ситуацию, которую невозможно предсказать. Принудило признать наличие в природе непредсказуемых явлений: в частности, индивидуального акта радиоактивного распада. Заставило смириться с тем, что природа разрешает предугадать лишь то, какая доля атомов из данного количества распадётся за определённое время, но не позволяет узнать, когда именно это случится с тем или иным из них.
Среди законов природы есть закон случая. И когда учёные говорят о вероятностных явлениях, они имеют в виду те, что происходят по закону случая. Радиоактивный распад иллюстрирует именно непредсказуемые процессы.
Конечно, такая ситуация вызывала известное неудовольствие. Но что было делать, с этим приходилось мириться. Учёные, возможно, утешали себя примером Ньютона: тот тоже мирился с незнанием природы сил тяготения, удовлетворившись тем, что установил результат действия этих сил и сумел найти им количественную оценку.
А кроме того, нельзя сказать, что вероятностные законы оказались такой уж новостью. Они явились неожиданностью лишь в отношении атомов и элементарных частиц. В мире больших тел, в привычном нам мире не только учёные, но каждый из нас не раз сталкивался с законами случая.
Осень. Облетают листья. Совершенно очевидно, что почти все они упадут на землю. Но ни одна теория не предскажет, куда упадёт каждый лист. Можно лишь с определённой вероятностью утверждать, что листья будут располагаться в основном вокруг дерева. Большая их масса — под кроной. Часть отлетит в сторону. Какое-то количество будет унесено ветром.
Тут действует закон случая — «закон опадающих листьев»…
Эйнштейн смело использовал этот закон в применении к микромиру. Он провёл аналогию между вероятностью радиоактивного распада и вероятностью рождения фотонов при перескоке электронов внутри атома с орбиты на орбиту.
По мнению Эйнштейна, акты излучения и поглощения фотонов тоже подчиняются «закону опадающих листьев» — вероятностным законам. Эти законы относятся к поведению совокупности тел: листьев, атомов. Для большого скопления тел эти законы дают точную формулу поведения. Но о каждом из них в отдельности умалчивают. Для отдельного атома, как и для отдельного осеннего листа, за коны природы разрешают определить лишь вероятность того или иного события. Излучит атом фотон или поглотит — дело случая. Можно только подсчитать вероятность этого для данного отрезка времени.
Наверно, нечто подобное происходит при наступлении атакующей армии: можно определить, сколько снарядов и пуль выпустила в неприятеля эта армия, но невозможно установить, какой солдат или орудие и когда выпустило ту или иную пулю.
Вывод: нет и не может быть жёсткой связи между моментом рождения квантов внутри «атома Бора» при перескоке электронов с одной орбиты на другую и формулой Планка, рисующей поведение этих квантов — потока излучения из вещества — уже вне атома.
Это обескураживало физиков. Жизнь вносила в строгую, привычную к точности физику неопределённость, граничащую с произволом. Пока учёные видели лишь то, что вновь открытые ими квантовые законы запрещают, не видя ещё того, что они разрешают.
Об этом догадался опять-таки Эйнштейн. В его работе, опубликованной в 1917 году, был один нюанс, роль которого выяснилась много позже. Эйнштейн заподозрил возможность управлять излучением атомов. Он указал на то, что атом может излучать не только под влиянием непознанных ещё внутренних причин, но и в результате воздействия внешнего электромагнитного поля. Это был намёк на сенсационные возможности для техники будущего.
Важность этого замечания и его глубокий смысл долго ускользали от большинства учёных. Лишь незадолго до Великой Отечественной войны молодой преподаватель Московского энергетического института Фабрикант увидел в теории Эйнштейна возможность создать усилители света, работающие за счёт внутренней энергии атомов и молекул. Много позже, в 1954 году учёные следующего поколения Басов и Прохоров в Москве и независимо от них Таунс в Нью-Йорке, не зная о предложении Фабриканта, создали молекулярный генератор радиоволн, основанный, по суще ству, на той же работе Эйнштейна. Конечно, для создания этого прибора им пришлось учесть сложные закономерности из области радиофизики и молекулярной физики. Они вступили в интереснейшую область познания, давшую человечеству мазеры и лазеры, которые в свою очередь открыли широкие пути познания природы и развития технологии. Но об этом речь впереди.
Пока же мы должны понять, как постигали учёные давнюю дилемму «волна — частица».
Итак, Эйнштейн, уверовав в квантовую сущность природы, ещё дальше отошёл от волновой теории света. Остальные же учёные старшего поколения продолжали бить тревогу, указывать на то, что теория фотонов не способна объяснить те оптические явления, которые непринуждённо вытекают из волновых представлений. Эти учёные соглашались с фотонами лишь при одном условии: если фотоны представляют собой не физическую реальность, а только приём, облегчающий расчёты.
Впрочем, уже никто не считал эйнштейновские фотоны возвратом к прежним неделимым. Ведь фотоны появлялись в актах испускания и исчезали в актах поглощения, в то время как прежние частицы, например корпускулы Ньютона, считались вечными и неизменными.
Вскоре молодой американец Комптон, «крёстный отец» фотона, доказал, что фотоны могут не только рождаться и исчезать, но и видоизменяться. Он наблюдал воочию, как при столкновении с электроном фотон изменяет и свою энергию, и направление полёта. Конечно, можно сказать и так: при столкновении с электроном один фотон исчезает, а совсем другой рождается. Здесь различаются лишь слова. Суть состоит в том, что Комптон обнаружил доказательства реального существования индивидуальных фотонов.
Все попытки объяснить наблюдения Комптона при помощи волновой теории оканчивались неудачей.
Так, оптические явления всё более чётко располагались как бы в две группы. В одну входят те явления, которые непринуждённо объясняются на основании волновой теории и остаются необъяснимыми при помощи фотонов, во вторую — те, что не поддаются волновому описанию и с лёгкостью вытекают из представления о фотонах.
Известный исследователь рентгеновских лучей, лауреат Нобелевской премии Брэгг описал ситуацию так: каждый физик вынужден по понедельникам, средам и пятницам (занимаясь фотоэффектом и эффектом Комптона) считать свет частицами, а по вторникам и четвергам (изучая дифракцию и интерференцию) считать его волнами.
Вскоре это анекдотичное, а в сущности, неблагополучное положение распространилось в атомную физику.
Физиков беспокоило не только то, что модель атома Бора не позволяет объяснить спектры подавляющего большинства атомов — не даёт возможности понять, почему и когда атом излучает те или иные кванты энергии. Само существование стационарных орбит электронов в атоме оставалось необъяснённым. Почему электроны могут вращаться вокруг ядра на определённых расстояниях от него? Почему им нельзя вращаться на других расстояниях? Особенно многозначительным казалось то, что расстояния орбит от центра ядра кратны определённым числам, то есть тут явно не было случайности — тут сказывался жёсткий закон. Но какой?!
Первый подход к этой загадке нашёл совсем молодой французский физик Луи де Бройль. Он представил себе, что электроны в атоме — словно ноты на нотных строчках.
Расстояния между строчками указывают, что изменения частот звучания при переходе со строчки на строчку описываются определёнными дробными числами. Так же, как дробные числа, относятся между собой и радиусы орбит в атоме, на которых вращаются электроны.
И де Бройль представил себе, что электрон, словно некое умозрительное подобие звучащей ноты, тоже связан со своей волной. Что ему «уютно» только на такой орбите строчке, где укладывается целое число его волн. И если ему суждено перескочить на другую орбиту, то он «выберет» такую, где тоже уложится целое число волн. Так у каждого вещества образуется свой набор «нотных строчек», орбит. Это словно паспорт, по которому можно определить, какие кванты способны рождать электроны, перескакивающие с орбиты на орбиту в атоме данного элемента или вещества.
Так де Бройль связал между собой модель атома, придуманную Бором, механизм поведения в нём электронов с тем, что наблюдали исследователи при изучении фотоэффекта — связь цвета облучающего металл света с энергией выбиваемых из металла электронов. Всё это французский физик уяснил, размышляя о причинах, которые могли привести к появлению простых целочисленных значений при расчётах орбит электронов в атоме водорода.
Так он понял и секрет связи между частотой и энергией фотона — она уже не выглядела случайной. Физики убедились, что если на примере фотонов эти соотношения выявляют глубокую скрытую связь между корпускулярными и волновыми свойствами света, то на примере с электроном подобная связь существует между корпускулярными и волновыми свойствами материи.
Простая мысль привела к грандиозным следствиям… Теперь не только частица света (фотон) была связана со световой волной, но и электрон (частица материи) также оказался «в паре» с особой волной. Это приобретало уже философский смысл. Выявляло связь между веществом и энергией. И открывало новую страницу в понимании фундаментальных принципов природы.
Расчёт, проведённый де Бройлем, дал точное совпадение с боровскими орбитами. Более того: де Бройль показал в общих чертах, что его подход может позволить совместить теорию фотонов с явлениями дифракции и интерференции. То есть его предположение удовлетворяло и тех, кто считал свет частицами, и тех, кто определял его как волну. Между этими теориями оказался посредник — электрон, который раньше числился только частицей, а теперь, с лёгкой руки де Бройля, обзавёлся волновыми свойствами. Путь для слияния корпускулярной и волновой теорий света был найден.
Результаты де Бройля ошеломили учёных. Эйнштейн, всегда со вниманием относившийся к работам молодых, писал известному теоретику Борну о диссертации де Бройля:
«Прочтите её! Хотя и кажется, что её писал сумасшедший, написана она солидно».
Вскоре сверстник де Бройля, недавно скончавшийся Гейзенберг, разработал метод расчёта, позволивший ему, исходя из абстрактных математических принципов и не прибегая к гипотезе «частицы — волны», прийти ко всем результатам, полученным де Бройлем.
При этом он руководствовался оригинальным подходом к построению физических теорий. Он считал, что теория должна вытекать из опыта, описывать и предсказывать его результаты, но промежуточные этапы математических выкладок могут не иметь ничего общего с опытом. Что сказал бы на это Ньютон, все великие достижения которого опирались на опыт и только на опыт!
Самое трудное в этом методе — определить, на какой стадии вычислений получается то, что описывает реальность. Здесь на помощь приходит лишь интуиция и в то время ещё не ясный принцип соответствия, предложенный Бором. Суть этого принципа состояла в том, что законы классической физики должны вытекать из законов квантовой физики в тех случаях, когда квантовыми скачками можно пренебречь, когда явление из микрорамок переходит в макрообласть.
Эйнштейн протестовал против такого «рецептурного» пути в науке, когда для нахождения результата недостаточно учёта наглядных закономерностей и методов, а нужны ещё какие-то необъяснимые критерии. Он считал, что «всякая физическая теория должна быть такой, чтобы ее, помимо всяких расчётов, можно было проиллюстрировать с помощью простейших образов, чтобы даже ребёнок мог её понять».
Прошёл всего год, и важное, новое слово сказал третий молодой гений — Шредингер. Он показал, что между подходами де Бройля и Гейзенберга существует глубокая связь. Он написал знаменитое уравнение, носящее теперь его имя. С помощью этого уравнения можно было рассчитывать волновые процессы де Бройля, не прибегая к рецептурной математике Гейзенберга.
Результаты Шредингера произвели огромное впечатление. Это была настоящая, большая сенсация. Физикам казалось почти чудом, что результаты, получаемые абстрактными, основанными на применении малоизвестной за пределами узкого круга математиков теории матриц (так называется метод Гейзенберга), совпадают с результатами волновой механики (метод де Бройля), оперирующей совершенно иными и более доступными математическими средствами.
Успехи новой квантовой механики, которую некоторые предпочитали называть волновой механикой, омрачались глубокой, скрытой в ней принципиальной трудностью. Она переносила на частицы вещества — электроны и протоны — все противоречия и неясности, которые вновь ввела в оптику теория фотонов.
Теперь электроны и протоны, эти несомненно реальные корпускулы, оказались обладателями каких-то скрытых от непосредственного наблюдения волновых свойств. Свойств, проявляющихся в атомных спектрах, когда электрон выступает не как свободная частица, а как часть атомной системы.
Разумеется, если учёные хотели быть последовательными в этом утверждении, им нужно было продемонстрировать очевидный всем процесс, где проявляются эти волновые свойства частиц. Им необходимо было допустить, например, что поток электронов, проходя, через отверстие, должен обнаружить яв ление дифракции — такое же, как, скажем, у потока фотонов. Об этом, кстати, и говорил де Бройль, ожидая опытного подтверждения теории. Об этом же говорили и скептики, но как о парадоксе, которому суждено опровергнуть волновую механику.
Опыт наконец сказал своё слово. В Нью-Йорке — Девиссон и Джермер, в Абердине — Томсон и Рид, в Москве — Тартаковский независимо обнаружили дифракцию электронов при их прохождении через кристаллы или тонкие металлические фольги. Электроны вели себя, как волны света, морские волны, как любые традиционные объекты природы, обладающие волновыми свойствами! Но каждый электрон при этом оставался частицей…
Так был продемонстрирован дуализм электронов, вернее, дуализм их волновых и корпускулярных свойств. Впоследствии этот дуализм захватил в свою сферу протоны, а затем и все вновь открываемые частицы.
Очередной триумф теории одновременно расширил и углубил трещины в науке о материи, выявил неудовлетворительное состояние глубинных основ познания природы вещества.
Вопрос «волны или частицы?» требовал ответа.
После первых успехов и первых восторгов, как это часто бывает, наступило отрезвление. Опыт показал, что во многих случаях теория расходится с экспериментом, и не только малыми численными различиями. Например, иногда в спектрах атомов наблюдались линии, не предусмотренные теорией, и среди наблюдаемых линий отсутствовали предсказанные теорией.
Вскоре и эта загадка была решена. Ответ нашёл английский физик Дирак, один из тех «сердитых» молодых людей, которых не удовлетворяла классическая физика. Он утверждал, что причиной неудач является то, что ни де Бройль, ни Гейзенберг, ни Шредингер в своих теориях не учли теории относительности. Что же касается последующих попыток ввести в теорию соответствующие поправки — они были некорректными…
Дирак написал новые уравнения, объединившие принцип квантования и теорию относительности. Они оказались ещё более абстрактными и необычными, чем все предыдущие. Но их решения получались гораздо более близкими к реальности. В частности, из уравнений Дирака автоматически вытекал ответ на вопрос, волновавший физиков в течение трёх лет, предшествовавших работам Дирака.
Никто не мог понять, почему в спектрах некоторых веществ наблюдаются не только одиночные линии, но и двойные, вернее сдвоенные.
Два молодых физика Уленбек и Гаудсмит — это было в 1925 году — решились на авантюрный шаг. Они рискнули приписать электрону помимо заряда и массы ещё одно свойство — уподобили его вращающемуся шарику. Только в этом случае можно с лёгкостью объяснить необъяснимые квантовой теорией двойные спектральные линии. В соответствии с этой гипотезой, электрон ведёт себя как миниатюрный волчок. Его ось, подобно оси любого волчка, стремится сохранить своё направление, а вращательное движение его заряда приводит к появлению собственного магнитного поля электрона. Новое свойство получило наименование «спин» (от английского слова «вращаться»). Гипотеза спина хорошо объясняла непонятные до того особенности спектров, но казалась в высшей степени искусственной, ибо все попытки связать между собой известные характеристики электрона с моделью вращающегося шарика приводили к противоречивым и очевидным нелепостям.
Теория Дирака объясняла магнитные и механические характеристики электрона, не прибегая ни к каким моделям. И эти характеристики были в полном соответствии с опытом. Теория Дирака тоже исходила из предположения, что электрон обладает тремя равноправными свойствами — массой, зарядом и спином, но теперь не нужно было пытаться связать их между собой гипотезой о вращающемся шарике.
Наряду с блестящим решением загадки спина и преодолением многих расхождений первых вариантов квантовой теории с опытом теория Дирака привела к одному парадоксальному ре зультату, противоречившему всему, к чему привыкли физики.
Уравнения говорили о том, что электрон может находиться в состояниях с отрицательной энергией…
Явление, совершенно неслыханное: чтобы электрон начал двигаться, у него нужно отнять энергию. Чтобы привести его в состояние покоя — нужно придать ему энергию!
Эти выводы вызвали длительные споры. Споры не о том, верна ли теория, ибо во всех других случаях за неё был опыт, а о том, как понимать, как объяснить это её удивительное предсказание.
Состояние общей растерянности ещё более усугубилось, когда Дирак предложил выход, не менее парадоксальный, чем парадокс, который следовало объяснить. Он предположил, что его первоначальное толкование результата теории ошибочно, что теория не приводит к отрицательной энергии электрона, а предсказывает существование новой частицы, во всех отношениях тождественной электрону, но имеющей не отрицательный, а положительный заряд.
Физики скептически отнеслись к этой идее. Для них было достаточно известных элементарных частиц — электрона, протона и фотона, из которых так просто складывался весь мир.
Неопределённость господствовала ещё четыре года. Теория справлялась со всеми более сложными задачами, предсказывала новые эффекты, которые вскоре подтверждались опытами, а загадка отрицательной энергии и положительного электрона продолжала смущать тех, кто стремился к ясности и непротиворечивости.
В 1932 году Андерсон, а затем Блекнет и Оккиалини обнаружили при наблюдении космических лучей следы частиц, которые не поддавались объяснению, если не признать их следами положительных электронов. Впоследствии положительные электроны — позитроны — были получены и в искусственных ядерных реакциях.
По значению и по психологическому воздействию триумф теории, предсказавшей в то время существование новой элементарной частицы, можно сравнить лишь с открытием неизве стной ранее планеты Нептун. Теперь мы привыкли к открытию всё более и более удивительных микрочастиц, к предсказанию их свойств, которые затем подтверждаются опытом, и эти сенсации называем просто завершением очередной научной темы.
Наряду с триумфами квантовая теория продолжала встречаться с трудностями. Нерешённый вопрос — волны или частицы? — обращённый то к веществу, то к полю, — порождал новые противоречия.
Например, признав свет потоком фотонов, было естественно считать, что внутренняя полость раскалённой печи наполнена «фотонным газом». Но попытка применить к этому «газу» формулу Планка приводила не к ней, а к давно отвергнутой, ошибочной, «доквантовой» формуле Вина.
Индийский физик Бозе предположил, что корень ошибки — в применении к фотонам тех методов статистики, которые были разработаны для обычных частиц. Но обычные частицы, как думали в то время, вечны, они не рождаются и не гибнут, а фотоны рождаются при испускании и гибнут при поглощении. Иными словами, обычные частицы различимы, их можно, например, перенумеровать. Конечно, не практически, но принципиально это возможно. Фотоны же неразличимы, их нельзя перенумеровать даже в принципе. Если при выводе формул, описывающих статистические свойства частиц, учесть их неразличимость и применить эти формулы к фотонам, то вместо неверного результата Вина получается правильная формула Планка.
Эйнштейну пришлось редактировать немецкий перевод статьи Бозе, в которой излагались эти идеи. Одновременно он познакомился с диссертацией де Бройля, излагавшей волновую механику. Эйнштейн обнаружил глубокую связь этих внешне столь далёких теорий. Он показал, что идеи Бозе могут быть применены не только к фотонам, но к фотонному газу и к обычным газам, если число частиц в них не постоянно. На этом пути он получил ряд новых результатов в старой и, казалось, завершённой области молекулярной физики. Всё более очевидным становилось то, что классичес кая физика является частным случаем квантовой.
Порванные нити старых и новых теорий сближались…
Но для полной стыковки прежней, классической физики и новой время ещё не наступило.
Де Бройль продолжал упорствовать в своём мнении, склоняясь к концепции частиц, считая их волновые свойства в существенной мере формальными, а их появление в теории оправданным только для предсказания статистических свойств, наблюдаемых в опытах, где участвует много частиц.