А2. Клеточная мембрана выполняет функцию
1) синтеза белка
2) передачи наследственной информации
3) фотосинтеза
4) фагоцитоза и пиноцитоза
А3. Укажите пункт, в котором строение названной клетки совпадает с ее функцией
1) нейрон – сокращение
2) лейкоцит – проведение импульса
3) эритроцит – транспорт газов
4) остеоцит – фагоцитоз
А4. Клеточная энергия вырабатывается в
1) рибосомах 3) ядре
2) митохондриях 4) аппарате Гольджи
А5. Исключите из предложенного списка лишнее понятие
1) лямблия 3) инфузория
2) плазмодий 4) хламидомонада
А6. Исключите из предложенного списка лишнее понятие
1) рибосомы 3) хлоропласты
2) митохондрии 4) крахмальные зерна
А7. Хромосомы клетки выполняют функцию
1) биосинтеза белка
2) хранения наследственной информации
3) формирования лизосом
4) регуляции обмена веществ
В1. Выберите из предложенного списка функции хлоропластов
1) образование лизосом 4) синтез АТФ
2) синтез глюкозы 5) выделение кислорода
3) синтез РНК 6) клеточное дыхание
В2. Выберите особенности строения митохондрий
1) окружены двойной мембраной
2) содержат хлорофилл
3) есть кристы
4) наружная мембрана складчатая
5) окружены одинарной мембраной
6) внутренняя мембрана богата ферментами
ВЗ. Соотнесите органоид с его функцией
В4. Заполните таблицу, отметив знаками « + » или «-» наличие указанных структур в про– и эукариотических клетках
С1. Докажите, что клетка является целостной биологической, открытой системой.
2.5. Метаболизм: энергетический и пластический обмен, их взаимосвязь. Ферменты, их химическая природа, роль в метаболизме. Стадии энергетического обмена. Брожение и дыхание. Фотосинтез, его значение, космическая роль. Фазы фотосинтеза. Световые и темновые реакции фотосинтеза, их взаимосвязь. Хемосинтез. Роль хемосинтезирующих бактерий на Земле
Термины, проверяемые в экзаменационной работе:
2.5.1. Энергетический и пластический обмен, их взаимосвязь
Обмен веществ (метаболизм) – это совокупность взаимосвязанных процессов синтеза и расщепления химических веществ, происходящих в организме. Биологи разделяют его на пластический (
Для отдельных процессов, происходящих в организмах, используются следующие термины:
Живые существа для своей жизнедеятельности используют световую и химическую энергию. Зеленые растения –
Ферменты, их химическая природа, роль в метаболизме. Ферменты – это всегда специфические белки – катализаторы. Термин «специфические» означает, что объект, по отношению к которому этот термин употребляется, имеет неповторимые особенности, свойства, характеристики. Каждый фермент обладает такими особенностями, потому что, как правило, катализирует определенный вид реакций. Ни одна биохимическая реакция в организме не происходит без участия ферментов. Особенности специфичности молекулы фермента объясняются ее строением и свойствами. В молекуле фермента есть активный центр, пространственная конфигурация которого соответствует пространственной конфигурации веществ, с которыми фермент взаимодействует. Узнав свой субстрат, фермент взаимодействует с ним и ускоряет его превращение.
Ферментами катализируются все биохимические реакции. Без их участия скорость этих реакций уменьшилась бы в сотни тысяч раз. В качестве примеров можно привести такие реакции, как участие РНК – полимеразы в синтезе – и-РНК на ДНК, действие уреазы на мочевину, роль АТФ – синтетазы в синтезе АТФ и другие. Обратите внимание на то, что названия многих ферментов оканчиваются на «аза».
Активность ферментов зависит от температуры, кислотности среды, количества субстрата, с которым он взаимодействует. При повышении температуры активность ферментов увеличивается. Однако происходит это до определенных пределов, т.к. при достаточно высоких температурах белок денатурируется. Среда, в которой могут функционировать ферменты, для каждой группы различна. Есть ферменты, которые активны в кислой или слабокислой среде или в щелочной или слабощелочной среде. В кислой среде активны ферменты желудочного сока у млекопитающих. В слабощелочной среде активны ферменты кишечного сока. Пищеварительный фермент поджелудочной железы активен в щелочной среде. Большинство же ферментов активны в нейтральной среде.
2.5.2. Энергетический обмен в клетке (диссимиляция)
Энергетический обмен – это совокупность химических реакций постепенного распада органических соединений, сопровождающихся высвобождением энергии, часть которой расходуется на синтез АТФ. Процессы расщепления органических соединений у
В клетках дрожжей и растений (
Энергии, накопленной при гликолизе, слишком мало для организмов, использующих кислород для своего дыхания. Вот почему в мышцах животных, в том числе и у человека, при больших нагрузках и нехватке кислорода образуется молочная кислота (С3Н6O3), которая накапливается в виде лактата. Появляется боль в мышцах. У нетренированных людей это происходит быстрее, чем у людей тренированных.
Суммарная реакция энергетического обмена:
С6Н12O6 + 6O2 → 6СO2 + 6Н2O + 38АТФ.
А1. Способ питания хищных животных называется
1) автотрофным 3) гетеротрофным
2) миксотрофным 4) хемотрофным
А2. Совокупность реакций обмена веществ называется:
1) анаболизм 3) диссимиляция
2) ассимиляция 4) метаболизм
А3. На подготовительном этапе энергетического обмена происходит образование:
1) 2 молекул АТФ и глюкозы
2) 36 молекул АТФ и молочной кислоты
3) аминокислот, глюкозы, жирных кислот
4) уксусной кислоты и спирта
А4. Вещества, катализирующие биохимические реакции в организме, – это:
1) белки 3) липиды
2) нуклеиновые кислоты 4) углеводы
А5. Процесс синтеза АТФ в ходе окислительного фосфорилирования происходит в:
1) цитоплазме 3) митохондриях
2) рибосомах 4) аппарате Гольджи
А6. Энергия АТФ, запасенная в процессе энергетического обмена, частично используется для реакций:
1) подготовительного этапа
2) гликолиза
3) кислородного этапа
4) синтеза органических соединений
А7. Продуктами гликолиза являются:
1) глюкоза и АТФ
2) углекислый газ и вода
3) пировиноградная кислота и АТФ
4) белки, жиры, углеводы
В1. Выберите события, происходящие на подготовительном этапе энергетического обмена у человека
1) белки распадаются до аминокислот