Разве ты не знаешь, что, хотя они используют видимые формы и рассуждают о них, мыслят они не о самих формах, а об идеалах, с которыми не имеют сходства; не о фигурах, которые они чертят, а об абсолютном квадрате и абсолютном диаметре… и что в действительности геометры стремятся постичь то, что открыто лишь мысленному взору?
Итак, математика должна заниматься прежде всего изучением таких абстрактных понятий, как точка, прямая и целое число. Другие понятия, например треугольник, квадрат и окружность, можно определить через основные понятия, которые, как отметил Аристотель, должны оставаться неопределимыми, ибо в противном случае у нас не было бы отправной точки. О степени изощренности греческой математики можно судить хотя бы по тому, что определяемые там понятия должны были иметь аналоги в реальности либо по доказанному, либо по построению. Так, нельзя было ввести по определению трисектор угла и доказывать о нем теоремы: трисектор мог бы и не существовать. И так как грекам не удалось решить задачу о трисекции любого угла при тех ограничениях, которые они накладывали на геометрические построения, то они так и не ввели понятия трисектора.{7}
Свои рассуждения о математических понятиях греки начинали с
Из аксиом с помощью рассуждений выводятся заключения. Существует много типов рассуждений, например рассуждения по индукции, по аналогии и дедукции. Правильность заключения гарантирует лишь один из многих типов рассуждений. Заключение «Все яблоки красные», сделанное на основании того, что тысяча просмотренных яблок оказались красными, индуктивно и поэтому не абсолютно надежно. Заключение «Джон сможет окончить этот колледж», сделанное потому, что брат Джона, унаследовавший от родителей те же способности, окончил колледж, получено с помощью рассуждения по аналогии и заведомо не надежно. С другой стороны, дедуктивное рассуждение, несмотря на множество различных форм, гарантирует истинность заключения. Так, допуская, что все люди смертны и Сократ — человек, следует прийти к заключению, что Сократ смертен. Используемое в этом рассуждении правило логики является одной из форм суждения, которое Аристотель назвал
Аристотель, а вслед за ним и весь мир приняли за неоспоримую истину, что применение правил дедуктивного вывода к любым посылкам гарантирует получение заключений, не уступающих по надежности посылкам. Иначе говоря, если посылки истинны, то истинны и заключения. Следует отметить, в особенности для обсуждения в дальнейшем, что Аристотель абстрагировал правила дедуктивной логики из рассуждений, которыми тогда уже широко пользовались математики.{8} Дедуктивная логика — дитя математики.
Хотя почти все греческие философы считали дедуктивный вывод единственно надежным методом получения истины, Платон придерживался несколько иных взглядов. Не выдвигая возражений против дедуктивного доказательства, Платон тем не менее считал его поверхностным, поскольку математические аксиомы и теоремы существуют в некотором объективном, независимом от человека мире, и в соответствии с учением Платона об анамнезисе человеку необходимо лишь вспомнить эти аксиомы, чтобы сразу же распознать их неоспоримую истинность. Теоремы, если воспользоваться сравнением из диалога Платона «Теэтет», подобны птицам в птичнике. Они существуют сами по себе, и необходимо лишь «схватить» их. В диалоге Платона «Менон» Сократ с помощью искусно поставленных вопросов вытягивает из молодого раба утверждение, что площадь квадрата, построенного на гипотенузе равнобедренного прямоугольного треугольника, вдвое больше площади квадрата, построенного на любом из катетов. Сократ торжествующе заключает, что искусно поставленные вопросы помогли рабу, никогда не изучавшему геометрию, вспомнить теорему.
Важно правильно оценивать,
Предпочтение, отдаваемое философами дедуктивным рассуждениям, обусловлено еще одной причиной. Философов интересуют лишь самые общие факты, касающиеся человека и физического мира, а чтобы установить такие универсальные истины, как то, что человек по существу добр, что в мире царит порядок или что человеку есть ради чего жить, дедуктивный вывод из подходящих исходных принципов осуществим в гораздо большей мере, чем индукция или рассуждение по аналогии.
Еще одну причину того, что греки классического периода отдавали предпочтение дедукции, можно усмотреть в организации их общества. Философией, математикой и искусством, естественно, увлекались прежде всего состоятельные люди, а не те, кто занимался физическим трудом. Все домашнее и общественное хозяйство держалось на рабах, метеках (свободных людях, не имевших, однако, гражданских прав){9} и на свободных гражданах — ремесленниках; они же представляли все важнейшие профессии. Образованные свободные граждане не занимались физическим трудом и редко участвовали в торговых сделках. Платон провозгласил, что профессия лавочника недостойна свободнорожденного, и предложил подвергать наказанию всякого гражданина, который унизит себя подобным занятием, как совершившего преступление. Аристотель утверждал, что в идеальном государстве ни один гражданин (в отличие от рабов) не должен заниматься никаким ремеслом. Беотийцы (одно из греческих племен) запрещали тем, кто запятнал себя участием в торговых сделках, в течение десяти лет занимать общественные должности. В таком обществе эксперимент и наблюдение были мыслителям чужды. Считалось, что источники такого рода не могут помочь получить результаты научного, в частности математического, характера.
Хотя приверженность греков дедуктивному доказательству имела под собой немало оснований, не вполне ясно, кто из философов или какая группа мыслителей впервые продемонстрировали эту приверженность. Наши знания учений и трудов философов — до Сократа — носят, к сожалению, весьма фрагментарный характер, и, хотя на этот счет неоднократно высказывались различные мнения, ни одно из них не получило общего признания. Мы можем лишь с уверенностью утверждать, что во времена Аристотеля требование дедуктивности соблюдалось неукоснительно, так как Аристотель, формулируя в явном виде стандарты строгости, отмечает необходимость неопределяемых терминов и правил логического вывода.
Насколько удалось грекам осуществить свой план установления математических законов Вселенной? К счастью, лучшие достижения греческой математики, созданной усилиями Евклида, Аполлония, Архимеда и Клавдия Птолемея, дошли до нас. Хронологически все эти авторы относятся ко второму великому периоду греческой культуры, получившему название
Достоверно установлено, что Евклид жил и преподавал в Александрии около 300 г. до н.э. (сам Евклид скорее всего получил образование в Платоновской Академии в Афинах). Это почти единственная информация, которой мы располагаем о частной жизни Евклида. Свои труды Евклид облекал в форму обширных систематических дедуктивных обзоров отдельных открытий многих греческих авторов классического периода. В главном труде Евклида — «Началах» излагаются основные свойства пространства и пространственных фигур.
«Началами» Евклида отнюдь не исчерпывается его вклад в развитие геометрии пространства. Он посвятил коническим сечениям не дошедшее до нас сочинение, а уроженец города Перга в Малой Азии Аполлоний (262-190 гг. до н.э.), изучавший математику в Александрии, продолжил исследование параболы, эллипса и гиперболы и написал по этому предмету классический труд — «Конические сечения».
Архимед (287-212 гг. до н.э.), возможно получивший образование в Александрии{10}, но живший на Сицилии, добавил к чисто геометрическим достижениям греков трактаты: «О шаре и цилиндре», «О коноидах и сфероидах» и «Квадратура параболы», посвященных вычислению площадей и объемов сложных фигур и тел по методу, предложенному Евдоксом (390-337 гг. до н.э.) и получившему впоследствии название метод исчерпывания. В наши дни подобные задачи решаются методами интегрального исчисления.
Греки внесли еще один крупный вклад в изучение пространства и пространственных фигур: они создали тригонометрию. Ее основы были заложены Гиппархом, который жил на Родосе и в Александрии и умер около 125 г. до н.э. Его труд был продолжен Менелаем (ок. 98 г. н.э.), а полное и вполне авторитетное изложение астрономии дал египтянин Клавдий Птолемей (умер в 168 г. н.э.), работавший в Александрии. Главный труд Птолемея «Большое математическое построение астрономии» более известен под арабским вариантом названия — «Альмагест».{11} Тригонометрия занимается изучением количественных соотношений между сторонами и углами треугольника. Греков интересовали главным образом треугольники на поверхности сферы со сторонами, образованными дугами больших кругов (так называются круги, плоскость которых проходит через центр сферы), поскольку именно такие сферические треугольники находили применение при изучении движений планет и звезд, перемещавшихся, как считали греки, по дугам больших кругов. Но ту же теорию можно «перенести» и на случай треугольников на плоскости. Именно этот вариант — плоская тригонометрия — входит в программу современной средней школы. Введение тригонометрии потребовало весьма основательных познаний в арифметике и даже некоторого знакомства с алгеброй. В дальнейшем (гл. V) мы узнаем о достижениях греков в этих областях математики.
Достигнутые успехи превратили математику из свода неясных, эмпирических, разрозненных фрагментов в блестящую, обширную, систематическую и глубокую науку. Классические труды Евклида, Аполлония и Архимеда («Альмагест» Птолемея является исключением), посвященные изучению свойств пространства и пространственных фигур, могут показаться весьма специальными и не позволяют составить верное представление о более широкой значимости излагаемого в них материала. Может создаться впечатление, что эти чисто геометрические сочинения имеют весьма косвенное отношение к раскрытию истинных тайн природы. Ведь все классические труды посвящены лишь изложению формализованной, изысканной, дедуктивной математики. В этом отношении греческие математические тексты не отличаются от современных учебников и монографий по математике. Авторы таких книг видят свою главную задачу в организации и связном изложении полученных математических результатов и считают излишним как-либо обосновывать важность излагаемых разделов науки и игнорируют возможные эвристические соображения и разбор частных случаев, подкрепляющих правдоподобность доказываемых теорем, а также умалчивают о возможных применениях своих конструкций. Многие историки науки, специализирующиеся на изучении греческой математики классического периода, склонны поэтому считать, что математики той эпохи занимались математикой ради математики, и в подтверждение своих слов ссылаются на два величайших компилятивных сочинения классического периода — «Начала» Евклида и «Конические сечения» Аполлония. Но те, кто так утверждает, чрезмерно сужают поле зрения. Ограничиваться рассмотрением только «Начал» и «Конических сечений» — это то же самое, что, исходя из одной лишь работы Ньютона о разложении бинома, утверждать, что Ньютон был чистым математиком.
Подлинной целью греков было исследование природы. Этой цели служило все — даже геометрические истины высоко ценились лишь постольку, поскольку они были полезны при изучении физического мира. Греки понимали, — что в структуре Вселенной воплощены геометрические принципы, первичным компонентом которых является пространство. Именно поэтому исследование пространства и пространственных фигур явилось существенным вкладом в изучение природы. Геометрия входила составной частью в более широкую программу космологических исследований. Например, изучение сферической геометрии было предпринято, когда астрономия приобрела математический характер, что произошло во времена Платона. Греческое слово «сфера» (шар) у пифагорейцев имело тот же смысл, что и (тогда еще не существовавшее) слово «астрономия». Сочинение Евклида «Феномены», посвященное сферической геометрии, предназначалось для использования в астрономии. Подобные факты и более полное знание того, как происходило развитие математики в последующие времена, позволяют утверждать, что и у греков к постановке математических проблем приводили естественнонаучные исследования и что математика была неотъемлемой частью изучения природы. Чтобы прийти к такому выводу, не нужно строить умозрительные заключения — достаточно выяснить, чего именно удалось достигнуть грекам в исследовании природы и кому принадлежат самые крупные достижения.
Величайший успех в области собственно физической науки выпал на долю астрономии. Платон, хорошо осведомленный о впечатляющем числе астрономических наблюдений, проведенных в Древнем Египте и Вавилоне, неоднократно подчеркивал, что египтяне и вавилоняне не располагали основополагающей, обобщающей теорией, которая позволила бы объяснить наблюдаемые нерегулярные движения планет. Положение дела попытался «исправить» некогда учившийся в Академии Евдокс, чья чисто геометрическая работа включена в V и XIII книги «Начал» Евклида. Полученное Евдоксом решение составило первую в истории науки в разумных пределах завершенную астрономическую теорию.
Мы не станем подробно описывать теорию Евдокса. Скажем лишь, что это была сугубо математическая теория, рассматривавшая движения взаимодействующих сфер. За исключением сферы неподвижных звезд, все сферы в теории Евдокса были не материальными телами, а математическими конструкциями. Евдокс даже не пытался установить, какие силы вынуждают сферы вращаться так, как они, по его утверждению, вращались. Теория Евдокса весьма современна нам по духу, ибо и в настоящее время целью науки зачастую считается математическое описание, а не физическое объяснение. Теория Евдокса была превзойдена теорией, создание которой принято приписывать трем величайшим астрономам-теоретикам: Аполлонию, Гиппарху и Птолемею. Эта теория вошла в «Альмагест» Птолемея.
Никакие труды Аполлония по астрономии до нашего времени не дошли. Однако различные греческие авторы, в том числе Птолемей (в XII книге «Альмагеста»), ссылаются на его результаты. Как астроном, Аполлоний пользовался такой известностью, что получил прозвище ε (эпсилон), поскольку он много занимался движением Луны, а Луну греческие астрономы обозначали буквой ε. До нас дошло лишь одно небольшое астрономическое сочинение Гиппарха, но в «Альмагесте» Птолемея мы находим ссылки на Гиппарха и восхваления в его адрес.
Основная схема того, что теперь принято называть птолемеевой системой мира, вошла в греческую астрономию в период между работами Евдокса и Аполлония. Согласно этой схеме, планета
Рис. 1.5. Эпицикл и деферент.
Для описания движений некоторых планет Птолемей несколько видоизменил описанную схему. Подходящим образом выбирая радиусы эпицикла и деферента, скорости движения тела по эпициклу и скорости движения эпицикла по деференту, Гиппарх и Птолемей смогли получить описания движений небесных тел, хорошо согласующиеся с результатами астрономических наблюдений того времени. Со времен Гиппарха лунное затмение можно было бы предсказать с точностью до одного-двух часов, хотя солнечные затмения удавалось предсказывать менее точно. Такие предсказания стали возможными, потому что Птолемей применил тригонометрию, разработанную им, по его собственному признанию, для астрономии.
Как и Евдокс, Птолемей отчетливо сознавал (и это необходимо особо отметить, имея в виду нашу главную тему — поиск истин), что его теория представляет собой не более чем удобное математическое описание, согласующееся с наблюдениями, и не обязательно должна отражать истинный механизм движения планет. При описании движений некоторых планет Птолемею приходилось рассматривать несколько альтернативных схем, и он отдавал предпочтение той, которая была проще с точки зрения математики. В XIII книге «Альмагеста» Птолемей утверждает, что астрономия должна стремиться к возможно более простой математической модели. Но христианский мир принял математическую модель Птолемея за абсолютную истину.
Теория Птолемея дала первое полное, в разумных пределах, подтверждение постоянства и неизменности природы и была воспринята как окончательное решение поставленной Платоном проблемы объяснения видимых движений небесных тел. Никакой другой из полученных в греческую эпоху результатов не может соперничать с «Альмагестом» по глубине влияния на представления о Вселенной, и ни одно сочинение, за исключением «Начал» Евклида, не обрело столь беспрекословного авторитета.
Разумеется, в нашем кратком очерке греческой астрономии не названы многие другие достижения античных астрономов и не дано полного представления о глубине и размахе свершений тех, кого мы здесь упомянули. Греческая астрономия достигла высокого уровня развития и наглядности и весьма широко применяла математику. Кроме того, почти каждый греческий математик, в том числе и такие мастера, как Евклид и Архимед, занимался астрономией.
Постижение физических истин не закончилось на геометрии пространства и астрономии. Греки заложили также основы механики. Механика изучает движение тел, которые можно рассматривать как материальные точки, движение протяженных тел и силы, вызывающие эти движения. В своей «Физике» ([6], т. 3, с. 59-262) Аристотель свел воедино все высшие достижения греческой механики. Как и вся аристотелева физика, его механика опирается на рациональные самоочевидные принципы, согласующиеся с наблюдениями. Хотя эта теория сохранила влияние на протяжении почти двух тысячелетий, мы не останавливаемся на ее изложении, так как она была полностью вытеснена механикой Ньютона. Существенными дополнениями к аристотелевой теории движения стали работы Архимеда по определению центров тяжести тел и его теория рычага. Во всей этой деятельности для нас наиболее существенна ведущая роль математики; тем самым получило подтверждение всеобщее убеждение в том, что в постижении законов природы первостепенное значение имеет математика.
Не меньший интерес, чем астрономия и механика, вызвала оптика. Основы этой науки также были заложены греками. Почти все греческие философы, начиная с пифагорейцев, строили умозрительные заключения о природе света, зрения и цвета, но нас интересуют математические достижения в этой области. Первым было априорное утверждение Эмпедокла (около 490 г. до н.э.) из Агригента — города на острове Сицилия — о том, что свет распространяется с конечной скоростью. Хронологически первыми систематическими исследованиями света, сохранившимися до нашего времени, стали сочинения Евклида «Оптика» и «Катоптрика»{12}. В «Оптике» Евклид рассматривает проблемы зрения и использования зрения для определения размеров различных предметов. В «Катоптрике» (теории зеркал) показано, как ведут себя лучи света при отражении от плоских, выпуклых и вогнутых зеркал и как ход лучей сказывается на том, что мы видим. Как и «Оптика», «Катоптрика» начинается с определений, которые в действительности являются постулатами. Теорема I (аксиома в современных учебниках и монографиях), играющая основополагающую роль в геометрической оптике известна как закон отражения. Она утверждает, что угол
Рис. 1.6. Отражение от плоского зеркала.
Рис. 1.7. Отражение от выпуклого зеркала.
Математик и инженер Герон (I в.) вывел из закона отражения важное следствие. Если
Об отражении света от зеркал различной формы было написано великое множество работ. Среди ныне безвозвратно утерянных сочинений — «Катоптрика» Архимеда, «О зажигательном зеркале» Аполлония (около 190 г. до н.э.) и «О зажигательных зеркалах» Диоклеса (около 190 г. до н.э.). Зажигательные зеркала были вогнутыми и имели форму сферического сегмента параболоида вращения (поверхности, образованной вращением параболы вокруг ее оси) и эллипсоидов вращения. Аполлонию было известно, а в книге Диоклеса содержалось доказательство, что параболическое зеркало, отражая свет от источника света, помещенного в его фокусе, собирает лучи в пучок, параллельный оси зеркала (рис. 1.8). Наоборот, если пучок падающих лучей направить параллельно оси параболического зеркала, то после отражения лучи соберутся в фокусе. Собранные в фокусе солнечные лучи вызывают резкий разогрев и способны зажечь помещенный в фокусе горючий материал, откуда и название — зажигательное зеркало. По преданию, Архимед, воспользовавшись этим свойством зажигательных зеркал, сконцентрировал солнечные лучи на римских судах, блокировавших с моря его родной город Сиракузы, и поджег неприятельский флот. Аполлонию были известны отражательные свойства и других конических сечений. Он знал, например, что все лучи, выходящие из одного фокуса эллиптического зеркала, после отражения собираются в другом фокусе. В книге III «Конических сечений» приведены соответствующие геометрические свойства эллипса и гиперболы.
Рис. 1.8. Отражение от параболического зеркала.
Греки заложили основы многих других наук. Особенно велика их роль как основоположников географии и гидростатики. Эратосфен из Кирены (около 284-192 гг. до н.э.), один из наиболее образованных людей античности, директор Александрийской библиотеки, вычислил расстояния между многими населенными пунктами на той части Земли, которая была известна древним грекам. Ему также принадлежит широко известное ныне вычисление длины окружности Земли. В своей «Географии» Эратосфен помимо описаний используемых им математических методов объяснил причины изменений, происходящих на поверхности Земли.
Самым обширным сочинением по географии была «География» Птолемея в восьми книгах. В ней Птолемей не только дополнил и расширил труд Эратосфена, но и определил положение на поверхности Земли восьми тысяч мест, указав те самые их широты и долготы, которыми мы пользуемся и поныне. Птолемей изложил также методы составления карт, применяемые и в современной картографии, в частности метод стереографической проекции. Во всех трудах по географии основную роль играла сферическая геометрия, которую греки применяли с IV в. до н.э.
Гидростатика занимается изучением давления, оказываемого жидкостью на погруженное в нее тело. Здесь основополагающим трудом по праву считается сочинение Архимеда «О плавающих телах». Как и все остальные сочинения, о которых мы упоминали, оно чисто математическое как по своему подходу, так и по способу получения результатов. В частности, именно в этом сочинении сформулирован знаменитый принцип, известный ныне под названием закона Архимеда, который гласит, что на погруженное в жидкость тело действует выталкивающая сила, равная весу вытесненной телом жидкости. Таким образом, мы обязаны Архимеду объяснением того, каким образом человек может остаться на плаву в мире сил, стремящихся утопить его.
Хотя в александрийский период дедуктивный подход к математике и математическому изложению законов природы играет главенствующую роль, следует отметить, что в отличие от своих предшественников классического периода александрийцы не отказывались от экспериментов и наблюдений. Так, александрийцы использовали результаты высокоточных астрономических наблюдений, которые в течение двух тысячелетий производили вавилоняне. Гиппарх составил каталог звезд, наблюдавшихся в его время. Среди изобретений александрийцев (сделанных главным образом Архимедом, а также математиком и инженером Героном) мы находим солнечные часы, астролябии и устройства для использования энергии пара и воды.
Особую известность приобрел Александрийский музей, основанный непосредственным преемником Александра Македонского в Египте — Птолемеем Сотером. Музей стал родным домом ученых; его библиотека насчитывала около 400 тыс. томов. Поскольку ее хранилища не могли вместить все рукописи, еще 300 тыс. томов были размещены в храме Сераписа. Ученые не только занимались наукой, но и проводили занятия с учениками.
Своими математическими трудами и многочисленными исследованиями греки существенно подкрепили тезис о том, что Вселенная зиждется на математических принципах. Математика внутренне присуща природе, является истиной о структуре природы, или, если воспользоваться выражением Платона, реальностью о физическом мире. Закон и порядок существует в природе, и математика — ключ к пониманию этого порядка. Более того, человеческий разум способен проникнуть в сокровенный план природы и открыть математическую структуру Вселенной.
Толчком к созданию концепции логического, математического подхода к познанию природы послужили, по-видимому, «Начала» Евклида. Хотя сочинение Евклида предназначалось для изучения физического пространства, структура самого сочинения, его необычайное остроумие и ясность изложения стимулировали аксиоматическо-дедуктивный подход не только к остальным областям математики, например к теории чисел, но и ко всем естественным наукам. Через «Начала» Евклида понятие логической структуры всего физического знания, основанного на математике, стало достоянием интеллектуального мира.
Тем самым греки установили союз математики и изучения явлений природы, который стал фундаментом всей современной науки. Вплоть до конца XIX в. поиск математических принципов, лежащих в основе природы, был поиском истины. Глубокое убеждение в том, что математические законы открывают истины о природе, привлекало к математике самых глубоких и возвышенных мыслителей.
II
Расцвет математических истин
Главной целью всех исследований внешнего мира должно быть открытие рационального порядка и гармонии, которые бог ниспослал миру и открыл нам на языке математики.
Созданная греками великая цивилизация распалась по нескольким причинам. Первой причиной ее заката было постепенное завоевание римлянами Греции, Египта и Ближнего Востока. Распространяя свое владычество, римляне не ставили целью распространение своей культуры. Завоеванные территории римляне быстро превращали в колонии, из которых грабежом и поборами выкачивали колоссальные богатства.
Другой удар языческой культуре греков нанесло возникновение христианства. Создатели новой религии включили в нее множество греческих и восточных мифов и обычаев с очевидным намерением сделать христианство более доступным для новообращенных, но в то же время заняли непримиримую позицию по отношению к языческой науке и даже осмеивали математику, астрономию и естественные науки. Несмотря на жестокие преследования со стороны римлян, христианство продолжало распространяться и достигло такого могущества, что римский император Константин Великий Миланским эдиктом 313 г. провозгласил христианство официальной религией Римской империи. Несколько позднее Феодосий (правивший в 379-392 гг.) запретил языческие религии и в 392 г. приказал разрушить языческие храмы.{13}
Тысячи греческих книг были сожжены. В 47 г. до н.э. римляне подожгли египетские суда, стоявшие в Александрийской гавани. В огне пожара, охватившего город, погибла знаменитая Александрийская библиотека — ценнейшее собрание древних рукописей. В тот год, когда Феодосий запретил языческие религии, христиане разрушили храм Сераписа в Александрии — хранилище уникального собрания уцелевших греческих рукописей. Многие сочинения греческих авторов, написанные на пергаменте, были стерты христианами, которые использовали этот пергамент для записи собственных текстов религиозного содержания.
Последующая история Римской империи также имеет непосредственное отношение к интересующей нас теме. Император Феодосий разделил необъятную империю между двумя своими сыновьями — Гонорием, которому отошла Италия и Западная Европа, и Аркадием, получившим в наследство Грецию, Египет и Ближний Восток. Западная часть Римской империи была завоевана в V в. готами, и ее дальнейшая история относится уже к истории средневековой Европы. Восточная часть Римской империи сохранила независимость. В состав Восточной Римской империи, известной также под названием Византийской империи, входили собственно Греция и Египет, что в какой-то мере способствовало сохранению греческой культуры и сочинений греческих ученых.
Завоевание Египта (640 г.) сторонниками набиравшего силу ислама нанесло греческой культуре удар, от которого она уже не смогла оправиться. Все ранее уцелевшие книги были уничтожены; как говорит предание, халиф Омар провозгласил: «Либо в этих книгах написано то, что есть в Коране, и тогда нам незачем их читать, либо они утверждают то, что противоречит Корану, и тогда их не подобает читать». Почти полгода бани Александрии отапливались пергаментными свитками.
После захвата Александрии приверженцами пророка Мухаммеда (Магомета) большинство ученых уехали в Константинополь, ставший столицей Восточной Римской империи. И хотя традиционная греческая культура не могла процветать в неблагоприятной для нее атмосфере Византии, приток ученых и возможность продолжать научную работу в условиях относительной безопасности способствовали приумножению сокровищницы знаний, ставшей через 800 лет достоянием Европы.
Свой вклад в дальнейшее развитие математики как науки внесли индийцы и арабы. Некоторые идеи индийских и арабских математиков сыграли немалую роль в дальнейшем.{14} За тысячелетие (200-1200 гг.) индийцы (не без влияния греческих источников) получили важные результаты в области арифметики и алгебры. Арабы — созданный ими Арабский халифат в период расцвета простирался по всему побережью Средиземного моря, глубоко вторгался на Ближний Восток и объединял разноплеменные народы, исповедовавшие ислам, — усвоили лучшие достижения греческой и индийской математики и получили ряд новых результатов. Действуя в духе греков александрийского периода, арабы в своих трудах опирались и на дедуктивные рассуждения, и на эксперимент. Арабские ученые сказали свое слово в алгебре, географии, астрономии и оптике. Заботясь о передаче знаний грядущим поколениям, арабы создавали школы и даже высшие учебные заведения. К чести арабов следует заметить, что, будучи ревностными приверженцами своей религии, они тем не менее считали недопустимым ограничивать религиозными догмами математические и естественнонаучные исследования.
Хотя индийцы и арабы основывали свои исследования на прочном фундаменте, воздвигнутом греками, и внесли свой вклад в дальнейшее развитие эллинской математики и естествознания, они не смогли в такой мере, как греки, проникнуться пониманием структуры Вселенной. Арабы переводили труды греческих ученых и составляли к ним обширные комментарии, в том числе и критические, но их достижения не пополнили сокровищницу знаний, накопленных их предшественниками, сколько-нибудь существенно (см., впрочем, [9], гл. III). К 1500 г. Арабский халифат распался, теснимый христианами на Западе и раздираемый междоусобицами на Востоке.
В то время как арабы строили и расширяли свою цивилизацию, в Западной Европе зарождалась новая цивилизация. В период средневековья (500-1500 гг.) в этой части мира был достигнут высокий уровень культуры. В европейской культуре того времени безраздельно господствовала христианская религия, а ее доктрины, при их определенных достоинствах, отнюдь не способствовали познанию физического мира. Вселенной, как утверждали отцы церкви, правит бог, и роль человека сводится к безропотному служению богу и снисканию милости божьей в надежде на спасение, дабы душа в загробном мире обрела радость и вечное блаженство. Земному существованию не следует придавать особого значения; трудности и страдания надлежит переносить с кротким терпением, ибо господь ниспосылает их, чтобы испытать, крепка ли вера человека. Нужно ли говорить, что в подобных условиях интерес к математике и естественным наукам, стимулом которого в античности служило изучение физического мира, переживал глубокий кризис. Мыслители средневековой Европы были ревностными искателями истин, но искали их в прилежном изучении Священного писания, а не в познании природы. Тем не менее в позднем средневековье философия поддерживала убеждение в правильности и постоянстве управляющих природой механизмов, хотя и считала, что в природе все происходит по воле божьей.
В конце периода средневековья Европа испытала поистине революционные потрясения, которые привели к значительным изменениям. Среди многих причин, способствовавших превращению средневековой цивилизации в современную, самой важной с точки зрения интересующей нас темы было пробуждение интереса к трудам греческих авторов и вновь начавшееся изучение их. Сочинения античных ученых становились известными в арабских переводах и через оригиналы, сохранившиеся в Византийской империи. После завоевания Византии турками в 1453 г. многие греческие ученые, захватив с собой книги, бежали на Запад. Именно из сочинений греков ведущие европейские мыслители того времени узнали, что природа построена на математических принципах и что план творения гармоничен, эстетически привлекателен и являет собой сокровенную истину о природе. Природа не только рациональна и упорядочение, но и действует в соответствии с неизбежными и неизменными законами. Европейские ученые приступили к исследованию природы как последователи древнегреческих философов.
Не подлежит сомнению, что многих европейских ученых побудило приступить к изучению природы возрождение греческих идеалов. Но темпы и широкий размах возрождения математики и естествознания были обусловлены и многими другими факторами. Силы, приводящие к крушению одной и вызывающие развитие другой культуры, многообразны и сложны. Процесс зарождения науки изучали многие ученые, и немало трудов по истории посвящено выяснению его причин. Мы ограничимся здесь кратким перечислением факторов, обусловивших тот интеллектуальный переворот, который ныне именуют Возрождением.
Возникновение класса свободных ремесленников небывало повысило интерес к материалам, способам их обработки и технологии, породив новые научные проблемы. Географические исследования, вызванные необходимостью поиска новых источников сырья и золота, способствовали распространению знаний о неведомых ранее странах и обычаях, бросавших своего рода вызов средневековой европейской культуре. В эпоху Реформации были отвергнуты многие католические доктрины, что усилило споры и даже скептицизм в отношении не только католицизма, но и протестантизма. Значение, которое пуритане придавали труду и полезности знаний, внедрение пороха, поставившее перед европейцами новые задачи военного характера (например, изучение траекторий пушечных ядер{15}), проблемы, связанные с плаванием в открытом море за тысячи миль от берега, — все это создавало благоприятную атмосферу для исследования природы. Изобретение книгопечатания способствовало распространению знаний, за чем, однако, неусыпно следила церковь. И хотя специалисты расходятся во мнениях относительно того, в какой мере те или другие силы повлияли на изучение природы, для наших целей достаточно отметить одновременное влияние многих факторов и тот общепризнанный факт, что научные знания и стремления к их приобретению стали отличительной чертой современной европейской цивилизации.
В целом европейцы далеко не сразу откликнулись на новые веяния. В эпоху Возрождения для европейцев было более характерно изучение сочинений греческих авторов, чем следование греческим идеалам (см., например, [10]). Но к началу XVI в. провозглашеннные греками цели научного исследования — изучение явлений природы на рациональной основе и поиск лежащего в их основе общего математического плана — проникли в умы европейцев. И тут европейцы столкнулись с серьезной проблемой: поставленные греками цели находились в противоречии с господствовавшей тогда в Европе культурной традицией. В то время как греки верили в математические принципы, лежащие в основе природы, в природу, неизменно и неукоснительно следующую некоторому идеальному плану, мыслители позднего средневековья приписывали и сотворение «плана», и все происходящее в природе христианскому богу. Он был творцом и создателем — и все в природе неукоснительно следовало его плану. Вселенная была творением бога и беспрекословно подчинялась его воле. Математики и представители естественных наук в эпоху Возрождения и на протяжении нескольких последующих столетий были правоверными христианами и полностью принимали эту доктрину. Но греческое учение о
Можно пойти дальше и утверждать, что математики того времени были уверены в существовании математических законов, лежащих в основе явлений природы, и настойчиво искали эти законы, будучи
Наиболее ярким примером происходившего в Европе слияния греческого учения о «математизированной» Вселенной с характерной для эпохи Возрождения верой в божественное ее происхождение являются труды Николая Коперника и Иоганна Кеплера. Вплоть до XVI в. единственной надежной и практически применимой астрономической теорией была
В те времена, когда Коперник принялся размышлять на астрономические темы, теория Птолемея претерпела некоторые усовершенствования. К эпициклам, введенным Птолемеем, добавились новые эпициклы, которые понадобились для того, чтобы привести теорию в соответствие с новыми астрономическими данными, собранными главным образом арабами. Во времена Коперника для описания движений Солнца, Луны и пяти известных в тот период планет птолемеевой теории требовалось уже семьдесят семь кругов. Многие астрономы, как о том упоминает Коперник в предисловии к своему сочинению, стали считать теорию Птолемея чрезмерно сложной.
Изучение достижений греческих ученых привело Коперника к убеждению в существовании единого математического плана, по которому построена Вселенная и который обеспечивает ее гармонию. Эстетические соображения требовали наличия более изящной теории, чем то сложное нагромождение эпициклов, которое содержалось в позднем варианте теории Птолемея. Из прочитанных книг Коперник узнал, что некоторые греческие авторы, главным образом Аристарх Самосский (III в. до н.э.){16}, высказывали предположение, что Солнце покоится, а Земля обращается вокруг него и одновременно поворачивается вокруг своей оси, и он решил выяснить, к чему может привести подобная гипотеза.
Поворотный момент в размышлениях Коперника наступил тогда, когда он воспользовался для описания движений небесных тел птолемеевой схемой деферента и эпицикла (гл. I), с тем, однако, существенным различием, что в центре каждого деферента находилось
Еще более замечательное упрощение ввел Иоганн Кеплер (1571-1630) — одна из самых удивительных фигур в истории науки. Жизнь Кеплера омрачалась множеством личных несчастий и трудностей, вызванных религиозными и политическими событиями. В 1600 г. ему посчастливилось стать ассистентом знаменитого астронома Тихо Браге, производившего многочисленные астрономические наблюдения и систематизировавшего полученные результаты, — это была первая крупная попытка такого рода со времен античности. Наблюдения Тихо Браге и небольшое число наблюдений, произведенных самим Кеплером, оказались для последнего бесценными. После смерти Браге в 1601 г. Кеплер стал его преемником на посту придворного математика австрийского императора Рудольфа II.
Научные рассуждения Кеплера поражают необузданной фантазией. Подобно Копернику, Кеплер был склонен к мистике и разделял убеждение в том, что мир создан богом в соответствии с простым и исполненным красоты математическим планом. В своем сочинении «Космографическая тайна» (1596) Кеплер утверждал ([12], с. 176), что «сущность трех вещей… а именно: число, размеры и движения небесных орбит» — заключена в гармонии замысла, которым всеблагой и всемогущий бог руководствовался при сотворении мира. Мысль о гармонии мира стала у Кеплера доминантой. Но Кеплер был наделен всеми качествами, которыми, по нашим критериям, должен обладать ученый. Он умел, если было нужно, обуздывать свою неуемную фантазию, подчиняя ее холодному рационализму. Хотя его богатое воображение живо откликалось на любые новые теоретические концепции, обладающие эстетической привлекательностью, Кеплер сознавал, что теория должна находиться в согласии с наблюдениями, а к концу жизни с еще большей отчетливостью понял, что эмпирические данные могут подсказать исследователю фундаментальные принципы науки. Кеплер безжалостно отбрасывал самые привлекательные и многообещающие математические гипотезы, если оказывалось, что они не согласуются с наблюдениями, и именно это невероятное упорство в неприятии даже самых незначительных расхождений между теорией и наблюдениями, с которыми легко смирился бы любой другой ученый того времени, позволило Кеплеру стать творцом новых научных идей, решительно порывающих с многовековой традицией. К тому же Кеплер обладал скромностью, терпением и энергией, т.е. всеми теми качествами, которые позволяют великим людям выполнять возложенную на них нелегкую миссию.
Предпринятый Кеплером поиск математических законов природы, в существовании которых он был глубоко убежден, поначалу складывался неудачно: не один год ушел на проверку неверных гипотез. В предисловии к «Космографической тайне» Кеплер так формулирует программу своего сочинения:
Я вознамерился доказать, что всеблагой и всемогущий бог при сотворении нашего движущегося мира и при расположении небесных орбит избрал за основу пять правильных тел, которые со времен Пифагора и Платона и до наших дней снискали столь громкую славу, выбрал число и пропорции небесных орбит, а также отношения между движениями в соответствии с природой правильных тел.{17}
Однако попытка раскрыть «тайну мироздания» на этой основе оказалась безуспешной: выводы теории, построенной на свойствах пяти правильных тел, расходились с результатами наблюдений, и, перепробовав множество вариантов в надежде спасти полюбившуюся ему идею, Кеплер был вынужден отказаться от намеченного подхода.
Зато необычайным успехом увенчались более поздние попытки Кеплера найти в природе гармонические математические отношения. Наиболее известные и значительные из полученных им результатов известны ныне под названием три закона Кеплера (законы движения планет). Первые два закона были опубликованы Кеплером в сочинении, вышедшем в 1609 г. под весьма длинным названием, так что обычно при ссылках на эту работу приводят либо начало названия — «Новая астрономия», либо его заключительную часть — «Комментарии о движении планеты Марс». Особенно замечателен первый закон Кеплера, ибо, сформулировав его, Кеплер порвал с двухтысячелетней традицией, согласно которой небесные тела должны обязательно двигаться по кругам или сферам. Кеплер отказался от деферента и нескольких эпициклов, к которым прибегали при описании движения любой планеты и Птолемей, и Коперник, и показал, что для описания движения планеты достаточно указать один-единственный эллипс. Первый закон Кеплера гласит:
Рис. 2.1. Первый закон Кеплера. Планеты движутся по эллипсам, в одном из фокусов которого находится Солнце.
Но чтобы быть полезной, астрономии следует идти гораздо дальше: она должна уметь предсказывать положения планет. Если мы обнаружим, что какая-то планета в момент наблюдения находится, скажем, в точке
Пытаясь найти скорость планеты, Кеплер сделал еще один решающий шаг. Коперник и греческие мыслители считали скорости планет постоянными. Планета у них двигалась по эпициклу равномерно, проходя равные дуги окружности за равные промежутки времени, а центр каждого эпицикла перемещался с постоянной скоростью по другому эпициклу или по деференту. Из наблюдений Кеплер знал, что планета движется по эллиптической орбите с изменяющейся скоростью, и в результате долгих и трудных поисков нашел правильный закон изменения скоростей. Кеплер открыл, что если планета, двигаясь по орбите, перемещается из точки
Рис. 2.2. Второй закон Кеплера: если дуги
Открыв второй закон (равенства секториальных скоростей), Кеплер был необычайно рад. Хотя пользоваться вторым законом не так просто, как законом постоянства скоростей, совершенное открытие подкрепило глубочайшую убежденность Кеплера в том, что господь бог, создавая Вселенную, руководствовался математическими принципами. Бог действовал чуть более изощренно, чем предполагали предшественники Кеплера, но теперь со всей очевидностью было установлено, что скорости движения планет по орбитам подчиняются математическому закону.
Но еще одна важная проблема по-прежнему оставалась нерешенной: по какому закону изменяются расстояния, отделяющие планеты от Солнца? Проблема осложнялась тем, что расстояние от планеты до Солнца не постоянно. И Кеплер принялся за поиск нового принципа, учитывающего зависимость расстояния от времени. По его глубокому убеждению бог сотворил мир не только на основе математических принципов, но и гармонично, причем слово «гармония» Кеплер понимал в самом прямом смысле. Так, он верил в существование музыки сфер, образующей гармонические созвучия, которые, хотя и невоспринимаемы на слух, но тем не менее их можно обнаружить при надлежащем «переводе» особенностей движения планет на ноты. Следуя этой путеводной идее и основываясь на поистине удивительной комбинации аргументов музыкального и математического характера, Кеплер устанавливает, что если
Сформулировав третий закон, Кеплер разражается ликующим хвалебным гимном богу-творцу:
«Вы, Солнце, Луна и планеты, восславьте его на своем неизъяснимом языке! Вы, небесные гармонии и все, кто постигает разумом его чудесные творения, воздайте ему хвалу! И ты, душа моя, восхвали создателя! Им все сотворено, и в нем все существует. Все лучшее из того, что мы знаем, заключено в нем и в нашей жалкой науке».
О том, с какой силой Коперник и Кеплер верили, что бог сотворил мир гармоничным и простым, можно судить по тем возражениям, с которыми им приходилось сталкиваться. Даже по теории Птолемея все остальные планеты, кроме Земли, находились в движении, и это объяснялось особо легкой и потому легко приводимой в движение субстанцией, из которой якобы сотворены планеты. Но что могло привести в движение тяжелую Землю? Ни Коперник, ни Кеплер не могли ответить на этот вопрос. Не принимая идею о суточном вращении Земли вокруг собственной оси, противники ее ссылались на такой, казалось бы, очевидный факт: тела не могли бы удержаться на поверхности вращающейся Земли и, сорвавшись с нее, улетели бы в космическое пространство, подобно тому как срываются предметы с вращающейся платформы. Против столь «неопровержимого» аргумента невозможно было возразить! Весьма неубедительным был ответ Коперника и на другой довод против суточного вращения Земли: вращающаяся Земля должна просто-напросто разлететься на части. На это Коперник возражал, что вращение Земли естественно и потому не может разрушить нашу планету. Должно быть, ощущая шаткость этого аргумента, Коперник, переходя в «контрнаступление», спрашивал, почему в таком случае небо не разлетается на части в результате очень быстрого суточного вращения, предусматриваемого геоцентрической теорией. Еще один довод против суточного вращения Земли состоял в следующем: если бы Земля вращалась с запада на восток, то любой предмет, подброшенный в воздух, отклонялся бы к западу, так как Земля под ним успевала бы поворачиваться. А если бы Земля к тому же обращалась вокруг Солнца, то более легкие предметы на Земле отставали бы от более тяжелых, поскольку скорости падающих предметов, как утверждали греки и продолжали считать ученые эпохи Возрождения, пропорциональны их весу. На это Коперник возражал, что воздух обладает земной природой и поэтому движется в полном соответствии с движением Земли. Суть всех этих возражений против суточного вращения Земли и ее обращения вокруг Солнца сводилась к тому, что движение Земли не вписывалось в рамки общепринятой во времена Коперника и Кеплера теории движения, предложенной еще Аристотелем.
Ряд научных возражений против гелиоцентрической теории выдвигала и сама астрономия. Наиболее серьезное возражение вызывало то, что в гелиоцентрической теории звезды считались неподвижными. Но за полгода Земля перемещалась в пространстве на расстояние около 300 млн. км. Следовательно, если наблюдатель заметит направление на какую-нибудь звезду, то спустя полгода он должен обнаружить, что это направление изменилось. Во времена же Коперника и Кеплера такого рода изменения в направлениях на звезды обнаружены не были. На это возражение Коперник отвечал, что звезды расположены слишком далеко от Земли и поэтому направления на звезды изменяются незначительно. Его ответ не удовлетворил критиков, заметивших, что если бы звезды были так далеки, как утверждает Коперник, то их нельзя было бы наблюдать. Тем не менее ответ Коперника был правильным. Направление на ближайшую звезду изменяется за полгода всего лишь на 0,31", и впервые это было обнаружено в 1838 г. немецким астрономом Фридрихом Вильгельмом Бесселем, имевшим в своем распоряжении хороший телескоп.
Сторонники геоцентрической теории спрашивали также, почему мы не ощущаем движения Земли, если та обращается вокруг Солнца со скоростью около 30 км/с, а скорость вращения вокруг собственной оси достигает на экваторе величины около 0,8 км/с? К тому же наши глаза убеждают нас в том, что Солнце обращается вокруг Земли. Для современников Кеплера ссылка на то, что мы не ощущаем движения с огромными скоростями, в котором сами участвуем, если верить новой астрономии, была неоспоримым контрдоводом. Все научные возражения против движения Земли были достаточно весомыми — от них нельзя было отмахнуться, как от брюзжания упрямцев, не желающих признать очевидную истину.
Коперник и Кеплер были людьми глубоко религиозными, и все же они оба дерзнули отказаться от одной из основных догм христианства: человек есть центр Вселенной и средоточие всех помыслов божьих. Гелиоцентрическая теория, поместив в центре Вселенной Солнце, подорвала столь успокоительную догму церкви. Человек стал одним из множества «странников», влекомых Землей в холодных небесных просторах. Утверждение церковников о том, будто человек рожден для того, чтобы прожить славную жизнь и обрести райское блаженство после смерти, стало казаться весьма сомнительным. Утратило правдоподобие и утверждение о том, будто человек является объектом особого внимания со стороны господа бога. Коперник подорвал тезис о том, будто бы Земля является центром Вселенной, указав, что размеры Вселенной огромны и поэтому бессмысленно говорить о каком бы то ни было центре Вселенной. Но в глазах его современников это рассуждение вовсе не выглядело убедительным.
И все же у Коперника и Кеплера был аргумент, перевешивавший все возражения против гелиоцентрической системы мира: им удалось построить более простую в математическом отношении, более гармоничную и эстетически более привлекательную теорию. Но если новая теория превосходит в математическом отношении старую, то для всякого, кто считал, что бог сотворил мир, используя при этом лучшую из теорий, любые сомнения в правильности гелиоцентрической теории должны были отпасть.
И в сочинении Коперника «О обращениях небесных сфер», и в многочисленных трудах Кеплера имеется немало высказываний, убедительно свидетельствующих, что Коперник и Кеплер были уверены в правильности построенной ими теории. Например, у Кеплера мы находим следующий отзыв о построенной им теории движения планет по эллиптическим орбитам: «Я клятвенно подтверждаю ее правильность и созерцаю ее красоту с неизъяснимым, переполняющим душу восторгом». Само название кеплеровского сочинения 1619 г. — «Гармония мира» и бесконечные дифирамбы богу, исполненные восхищения перед величием божественного математического плана, отражают убежденность Кеплера в правильности найденного им закона.
Сначала новая теория получила поддержку лишь у математиков. И это не было неожиданным. Только математики были убеждены в том, что Вселенная построена на простых математических принципах, только у математиков хватило интеллектуальной смелости, чтобы преступить через широко распространенные философские, религиозные и научные контраргументы и по достоинству оценить математические преимущества новой, революционной астрономии. Нужно было обладать неколебимой уверенностью в значимости математических принципов, на которых зиждется Вселенная, чтобы отстаивать новую теорию перед лицом сильнейшей оппозиции.
Однако затем гелиоцентрическая теория получила неожиданное подкрепление. В начале XVII в. был изобретен телескоп, и Галилей, прослышав об этом изобретении, сам построил телескоп и приступил к наблюдениям неба. Результаты наблюдений повергли в изумление современников Галилея. Он обнаружил у Юпитера четыре луны (в современные телескопы мы можем наблюдать 12 спутников Юпитера). Это открытие означало, что у движущейся планеты могут быть естественные спутники. Галилей наблюдал неровности и горы на поверхности Луны, пятна на Солнце, странные выступы по обе стороны экватора на Сатурне (сейчас мы знаем, что за выступы Галилей принял кольца Сатурна). Эти наблюдения явились еще одним свидетельством того, что планеты схожи с Землей и заведомо не являются идеальными телами, состоящими, как полагали греки и средневековые мыслители, из какого-то особого эфирного вещества. Млечный Путь, ранее казавшийся широкой светлой полосой, при наблюдении в телескоп «распался» на мириады звезд. В небесах были рассеяны множества других солнц и, возможно, другие планетные системы. Коперник предсказывал, что если бы человеческое зрение было более острым, то человек мог бы наблюдать фазы Венеры и Меркурия так же, как он может невооруженным глазом наблюдать различные фазы Луны. С помощью телескопа Галилей обнаружил фазы Венеры. Произведенные наблюдения убедили Галилея в правильности теории Коперника, и в своем классическом труде «Диалог о двух главнейших системах мира — птолемеевой и коперниковой» (1632) он решительно выступает в защиту новой теории. Теория Коперника завоевала признание еще и потому, что позволяла астрономам, географам и мореплавателям упростить вычисления. К середине XVII в. научный мир принял гелиоцентрическую систему. Уверенность в истинности математических законов природы возросла неизмеримо.
Отстаивать тезисы об обращении Земли вокруг Солнца и о суточном вращении Земли вокруг своей оси в интеллектуальной атмосфере начала XVII в. было отнюдь не просто. Всем известно о процессе, который инквизиция устроила над Галилеем. Набожный католик Паскаль обнаружил свои сочинения в Индексе запрещенных книг за то, что в «Письмах к провинциалу» опрометчиво выразил порицание иезуитам:
Напрасно также было с вашей стороны испрашивать в Риме декрет об осуждении мнения Галилея относительно движения Земли. Не этим будет доказано, что она стоит неподвижно; если бы имелись несомненные наблюдения, которые доказали бы, что именно она-то и вращается, то все люди в мире не помешали бы ей — вращаться, и себе — вращаться вместе с нею.
Коперник и Кеплер, не усомнившись, приняли синтез греческого учения о природе, основанной на математических принципах, и католического догмата о боге — творце и создателе Вселенной. Рене Декарт (1596-1650) вознамерился развить новую философию науки систематически, ясно и обоснованно. Декарт прежде всего был философом, во-вторых, он занимался проблемами космологии, в-третьих, был физиком, в-четвертых, — биологом и, только в-пятых, — математиком, хотя он и считается одним из основных творцов новой математики. Философия Декарта имеет весьма важное значение, поскольку именно она оказала решающее влияние на формирование самого стиля мышления, характерного для XVII в., и на таких гигантов, как Ньютон и Лейбниц.{18} Свою главную цель Декарт видел в нахождении способа, позволяющего устанавливать истину в любой области, и посвятил ей основной труд — «Рассуждение о методе, чтобы хорошо направлять свой разум и отыскивать истину в науках» (1637) ([14], с. 5-66).
Создавая свою философию, Декарт начинает с того, что принимает лишь те факты, которые представляются ему несомненными. Каким же образом удается ему провести различие между приемлемыми и неприемлемыми фактами? В своих «Правилах для руководства ума» (написанных в 1628 г., но опубликованных лишь посмертно) Декарт утверждает: «В предметах нашего исследования надлежит отыскивать не то, что о них думают другие или что мы предполагаем о них сами, но то, что мы ясно и очевидно можем усмотреть или надежно дедуцировать, ибо знание не может быть достигнуто иначе» ([15], с. 55). Человеческий разум непосредственно, силой интуиции, воспринимает основные, ясные и очевидные истины, а вывод следствий составляет сущность философии знания. Таким образом, по Декарту, существуют лишь два акта мышления, позволяющих нам получать новое знание без опасения впасть в ошибку: интуиция и дедукция. Однако в своих «Правилах для руководства ума» Декарт отдает предпочтение интуиции:
Под интуицией я разумею не веру в шаткое свидетельство чувств и не обманчивое суждение беспорядочного воображения, но понятие ясного и внимательного ума, настолько простое и отчетливое, что оно не оставляет никакого сомнения в том, что мы мыслим, или, что одно и то же, прочное понятие ясного и внимательного ума, порождаемое лишь естественным светом разума и благодаря своей простоте более достоверное, чем сама дедукция, хотя последняя и не может быть плохо построена человеком.
В «Рассуждениях о методе» Декарт отстаивал существование разума и достоверного, надежного знания, которым разум обладает. Опираясь на первичную интуицию, Декарт пытается в «Размышлениях о методе» доказать существование бога. Затем с помощью рассуждений, явно образующих порочный круг, Декарт убеждает себя в том, что наша интуиция и метод дедукции должны приводить к верным заключениям, поскольку бог не стал бы вводить нас в заблуждение.{19} «Под словом «бог», — утверждает Декарт в «Метафизических размышлениях» (1641), — я подразумеваю субстанцию бесконечную, вечную, неизменную, независимую, всемогущую, создавшую и породившую меня и все остальные существующие вещи» ([16], с. 363).
Что же касается собственно математических истин, то в «Метафизических размышлениях» Декарт говорит следующее: «Я считал наиболее достоверными те истины, которые ясно воспринимал как относящиеся к фигурам, числам и другим материям, принадлежащим арифметике, геометрии и вообще чистой и абстрактной математике… Только математикам дано достичь несомненности и ясности, ибо они исходят из того, что наиболее легко и просто». Источником математических понятий и истин являются не ощущения. Они носят врожденный характер и присущи нашему разуму от рождения; наделяет же ими наш разум сам бог. Чувственное восприятие материального треугольника не может помочь разуму составить представление об идеальном треугольнике. Для разума вполне очевидно, что сумма углов треугольника должна быть равна 180°.
Затем Декарт обращается к физическому миру. Можно не сомневаться, утверждает он, в том, что интуитивные представления, ясно сознаваемые разумом, и получаемые из них дедуктивные заключения применимы к физическому миру. Декарту было ясно, что бог при сотворении мира руководствовался математическими принципами. В «Рассуждениях о методе» он говорит о существовании «законов, установленных богом в природе, и понятий, запечатленных им в наших душах. Коль скоро мы достаточно поразмыслим над ними, то не станем более сомневаться в их проявлениях во всем, что существует и происходит в мире».
Далее Декарт утверждает, что законы природы неизменны, так как составляют неотъемлемую часть предустановленного богом математического плана. Еще до выхода в свет «Рассуждения о методе» Декарт в письме от 15 апреля 1630 г., адресованном отцу Марену Мерсенну, теологу и близкому другу математиков{20}, утверждал:
Не бойтесь всюду провозглашать, что бог установил эти законы в природе так же, как суверен устанавливает законы в своем королевстве… И подобно тому как король обретает тем большее величие, чем меньше знают его подданные, мы считаем величие бога непостижимым и не мыслим себя без небесного царя. Кто-нибудь возразит Вам, заметив, что если бог установил эти истины, то он же может изменить их, как изменяет король свои законы. На подобное возражение следует ответить, что такое действительно возможно, если может изменяться божья воля. Я не считаю эти истины вечными и неизменными по тем же причинам, по которым сужу о боге.