Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Компьютерра PDA N122 (09.07.2011-15.07.2011) - N730 Компьютерра на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Опубликовано 12 июля 2011 года

В прошлой колонке мы перечислили источники, пополняющие энергию утренней чашки кофе, как и энергию множества других процессов и результатов деятельности нынешнего человечества. Вот они:

• термоядерная энергия Солнца, преобразованная:

• современным фотосинтезом (наша пища, биомасса для сжигания);

• фотосинтезом в прошлые эпохи (горючие ископаемые);

• атмосферой и гидросферой (энергия ветров, рек и течений);

• солнечными батареями;

• термоядерная энергия предыдущих поколений звезд (ядерная энергия распада тяжелых элементов; часть тепловой энергии недр Земли);

• энергия распределения масс и импульсов в эпоху формирования Земли (выделение тепла вследствие гравитационной дифференциации планеты) и при образовании системы Земля-Луна (энергия приливов).

Ядерная энергия вносит свой вклад в проходящие на поверхности Земли процессы (известен даже естественный ядерный реактор, который действовал в геологическом прошлом), но непосредственно использует эту энергию один-единственный вид. Наш. Это одна из уникальных наших особенностей, но, вероятно, еще не самая важная.

Какой из источников энергии дает ее современному человечеству больше всего? Ископаемое топливо. Рассказать о его значении? "Нефть - кровь экономики"; "газовая труба - главное оружие России"; "действительная причина войн последних десятилетий - передел рынка энергоносителей и колебания цен на нефть": вы слышали все это.

В чем главная разница между использованием энергии современного и ископаемого фотосинтеза? На болотах каменноугольного периода росли родственники современных хвощей, плаунов и папоротников. В них шли те же процессы, что идут и сейчас. И сегодня отмершие части растений попадают на дно водоемов, богатых органикой. У дна, под слоем ила, где нет свободного кислорода, идут трансформации отмершей биомассы. Образование торфа - довольно быстрый процесс. Уголь получается за большее время...

Для нас сейчас важны две грани отличий современного и ископаемого фотосинтеза. Во-первых, потребление продуктов современного фотосинтеза ограничено его интенсивностью; потребление горючих ископаемых зависит от эффективности их добычи и сжигания. Во-вторых, продукты современного фотосинтеза - возобновимый ресурс. Ископаемое топливо - невозобновимый.

Грубо говоря, на 1 квадратный сантиметр внешней поверхности планеты, перпендикулярной солнечным лучам, падает чуть меньше двух калорий в минуту. Атмосфера что-то фильтрует, а что-то рассеивает; растения преобразуют в энергию химической связи около одной тысячной части попавшей на них солнечной энергии. Итого, возможная продуктивность фотосинтеза на планете - конечная величина, имеющая верхний предел. Естественно, реальная продукция биосферы далеко до него не дотягивает: на значительной части поверхности суши не хватает воды, на значительной части поверхности океана не хватает элементов минерального питания.

Потребители продуктов современного фотосинтеза преобразуют не больше энергии, чем ее фиксируется - конечно, в пересчете на определенный период времени. Деревья в лесу растут летом, а печку дровами топят зимой, однако на круг годовое потребление ограничено продукцией. Да, можно сжигать больше дров, чем нарастает леса, но в пересчете на столетие ограничение останется в силе.

Человечество обошло это ограничение благодаря ископаемым! Горючие ископаемые лучше и удобнее древесины - раз. Ископаемое топливо концентрируется в определенных местах - два. Копай шахту и вынимай слой за слоем уголек - топливо, которое не зависит от того, шумят над ними леса или перевеивается песок пустыни.

И тут выясняется, что уголек - невозобновимый ресурс. Это существенно? Весьма. Ручей, бегущий от горных ледников, будет течь, пока в горах будет выпадать снег зимой и дождь летом. Конечно, со временем прекратится и это (Земля находится сейчас примерно на середине своего жизненного пути), но думать об этом пока рано. Ручей, вытекающий из о-о-чень большой цистерны, обречен иссякнуть, когда она опустеет.

Виды, существующие благодаря ручейку современного фотосинтеза, потенциально могут оставаться в этом состоянии неограниченно долго. Условия будут меняться, потребуются какие-то изменения, но можно надеяться, что подобные организмы смогут вести относительно постоянный образ жизни и в достаточно далеком будущем.

Человечество, главным источником энергии которого являются невозобновимые ресурсы, уже в силу этого находится в переходном состоянии. Можно спорить о сроке, в течение которого источники нашей энергии кардинально изменятся; само такое изменение неизбежно. Сейчас мы (по очень грубой оценке) сжигаем за год столько горючих ископаемых, сколько их образовывалось за миллион лет.

Да, кстати, а источники ядерной энергии - они ведь тоже невозобновимы? Да. Но исчерпать их нелегко. Есть весьма редкие изотопы, доступность которых сильно ограничена, и есть относительно распространенные, запаса которых, как говорят, хватит весьма надолго.

Вернемся к чашке кофе. Кажется, есть решение. Греть утренний кофе на костре, а не на газовой плите (ну и, может быть, на электроплите, питаемой то ли от АЭС, то ли от ветряков) - и наши правнуки окажутся способны наслаждаться тем же ароматом? Увы. Дело в том, что производство кофе и сахара, тех самых веществ, которые мы потребляем, потребовало большего "расхода" ископаемой энергии топлива, чем современной энергии растительного фотосинтеза.

Поля под плантацию кофе и сахарной свеклы вспахали - с использованием энергии ископаемого топлива. В землю внесли удобрения, полученные за счет энергии ископаемого топлива. Воду для полива доставляли с расходованием энергии ископаемого топлива. Энергия ископаемого топлива потребовалась и на то, чтобы произвести средства защиты растений, и на то, чтобы их применить. Сбор урожая происходил с использованием энергии ископаемого топлива. Обработка - тоже. Вы догадываетесь, какая энергия использована для обжарки зерен и для очистки сахара? А как кофе и сахар попали оттуда, где они были выращены и обработаны, к вам? Нагрев кофе при его приготовлении - капля в море энергетических расходов на его получение. Кстати, этот кофе нагревается в строениях, возведенных с использованием энергии ископаемого топлива. Поддержание необходимого теплового режима, доставка воды, отведение отходов, освещение - все это осуществляется в большой мере благодаря той же по происхождению энергии.

Строения - строениями, вернемся к кофе с сахаром. Какую по происхождению энергию извлечет из него наше тело? Ту, что была накоплена в результате фотосинтеза, идущего на плантации или на поле. А куда делась энергия ископаемого топлива? Потрачена (очень неэффективно, кстати) на поддержание этого основного процесса. Представьте себе ребенка, который может ходить только за руку со взрослым. Работу по перемещению тела ребенка выполняют его собственные мышцы, но условием этого является перемещение взрослого, более энергозатратный процесс. Вас удивляет, что естественный (и древний) процесс фотосинтеза я сравниваю с маленьким ребенком? Речь идет не о фотосинтезе как таковом, а о его реализации в наших хрупких и неустойчивых агроэкосистемах: только отвернись, и все пойдет не так, как надо...

Энергетические субсидии - затраты энергии извне, поддерживающие основной процесс и способствующие повышению его эффективности. Самый простой вид субсидий - энергия мышц человека, обрабатывающего поле (или, к примеру, мышц муравья-листореза, возделывающего свой грибной огород). С соляркой для дизельного двигателя трактора или комбайна поступают намного более мощный поток энергии. Надежных оценок соотношения основного (фотосинтез) и вспомогательного (субсидии) потоков у меня нет, но есть основания не сомневаться в их серьезной диспропорции. В 70-е годы в США "вспомогательный" поток был в 10 раз мощнее "основного" (для получения 1 калории пищи тратилось 10 калорий субсидий); сейчас диспропорция существенно обострилась.

Поэтому, если мы сегодня откажемся от энергии из невозобновимых источников, завтра мы не просто останемся без утреннего кофе - под угрозой окажется выживание существенной части человечества в силу резкого уменьшения количества доступной пищи. Но послезавтра (фигурально говоря), отказаться от этих источников нас заставит суровая действительность. Что же делать?

Обосновать ответ в этой колонке я уже не успею, но важную для себя мысль продекларирую. Назад пути нет. Вера, что образ жизни наших прадедов спасет современное человечество, не выдерживает никакой критики. Перед нами открыт только один путь. Вперед. В отношении производства энергии это означает освоение возобновимых или практически неисчерпаемых источников энергии достаточной мощности - солнечных ли, термоядерных ли, не знаю.

Разговор об уникальных особенностях нашего вида закончен? Только начат...

Кафедра Ваннаха: Недешёвое фиаско

Автор: Ваннах Михаил

Опубликовано 13 июля 2011 года

Британская империя из Афганистана выходила трижды. Советскому Союзу хватило и одного раза. Cейчас и США объявили о намерении последовать этому примеру. Не сразу. В этом году будет выведено лишь десять процентов войск. Боевые части американцев и их британского союзника покинут горную страну в 2014 году. Но - всё. Вопрос решенный. И называется он (хоть Осаму бен Ладена с героически преданной, ну аккурат Клара Петаччи, супругой, и пристрелили) не иначе, как фиаско. Деятелей талибана приходится вводить в Высший совет мира. Некогда верный Карзай, безропотно перенесший смерть пристреленного по ошибке родича, начинает огрызаться на хозяев. И не будем забывать о критерии результат/стоимость.

"Война с террором" началась с событий 9/11. После этого промаха американских правоохранителей терактов на территории США не было. Война велась на чужой земле и малой (для американцев) кровью. Потери вооруженных сил США составили 6100 человек. На стороне их супостата погибло (по различным оценкам) от 225000 до 258000 человек. Из этого числа в Ираке было убито около 125000 гражданских, а в Афганистане - 14000 некомбатантов.

А сколько это развлечение стоило американскому налогоплательщику? И вот тут-то начинается самое забавное. Конгресс официально ассигновал на это 1,3 триллиона, но это лишь видимая часть айсберга. Согласно подсчетам, проведенным группой исследователей из респектабельного университета Брауна, входящего в Плющевую лигу, реальные расходы, замаскированные в других статьях бюджета, находятся в пределах от 2,3 до 2,7 триллионов (например, внутренняя война с террором, сканеры для разглядывания пассажиров под одеждой, обошлись в 400 млн.).

Но и к этим затратам надлежит добавить еще и неминуемые будущие расходы. Пенсии ветеранам вооруженных сил и немалые средства на их медицинское обслуживание. Траты на замену израсходованных в Ираке и Афганистане боеприпасов и военной техники. Тогда цена войны оказывается в пределах от 3,7 до 4,4 триллионов. Интересно, что в 2008 году гарвардские экономисты Линда Билмес и нобелевский лауреат Джозеф Стиглиц полагали, что Война с террором обойдется в 3 триллиона.

В результате "Война с террором" оказывается самой дорогостоящей из кампаний, которые вела Америка. Если считать в нынешних ценах, то Вторая мировая обошлась звездно-полосатой казне в 1,4 триллиона по оценкам Congressional Budget Office, а это стоимость создания ядерного оружия по Манхэттенскому проекту. 738 боевых кораблей основных классов, от линкора до эсминца, включая десятки авианосцев. 192000 самолетов, включая флоты стратегических бомбовозов B-17 и B-29, испепелявших города гитлеровской коалиции. Без малого сто тысяч танков и самоходок. Более полумиллиона орудий. 12330000 винтовок и карабинов, преимущественно самозарядных. 2,6 миллиона пулеметов и 1,9 миллиона пистолетов-пулеметов. А кроме этого - массово выпускающиеся транспортные суда Liberty и Victory. Огромное количество грузовиков и джипов. Под ружье было поставлено свыше 16 миллионов человек. Бои охватили Тихий океан, Африку, Западную Европу... И все это - 1,4 триллиона. А теперь локальная, по сути, задача обходится в четыре триллиона с лишним. И бен Ладена не сравнишь с Гитлером. И его сподвижников - с образованно-трудолюбивыми немцами, с артистически-усердными японцами... Почему же такая разница в результатах?

В той войне США оказались на вершине экономического и политического могущества капиталистического мира. Поверженные Италия и Германия, утратившие самостоятельные роли Британия и Франция послушно встраивались в мир Атлантической хартии. Фашизм был заклеймен и исчез с политической карты мира. Сейчас же, насколько можно судить по англоязычным радикально-исламистским сайтам, никто из тех ребят, кто приветствовал атаки на небоскребы, от своих взглядов отказываться не собирается, да еще госпожа Лагард намекнула на перспективы дефолта США.

Невозможно выиграть войну в Афганистане? Чушь! Монголы проблем в этом не испытали...

И ведь прошла же Революция в Военном деле. И ведь с террором воевала армия постиндустриальной эпохи, организованная по самым что ни на есть сетецентричным принципам, насыщенная последним писком хайтека. И, скажем прямо, - фиаско. Ценой более чем в четыре триллиона. Почему? Неэффективность стрельбы хеллфайрами да экскалибурами, по сотне килобаксов за изделие, по душману с китайским автоматом тип 56, везущему на ишаке ржавую мину?

Начнем с самого верхнего уровня. С того, что есть война. Война - это продолжение политики другими, насильственными, средствами. Ну а политика - от века воплощение экономики. А в чем был во Второй мировой экономический интерес США? Да в том, что бы столкнуть Британию с вершины пищевой пирамиды и занять ее место. Сделано это было изменением глобального мироустройства. Рамки старых империй были узки для развитых индустриальных технологий - им были нужны глобальные рынки. Индустрия США, уступая германской в квалификации отдельного рабочего, и, зачастую, конструктора, не произвела ничего подобного фотокамерам "Лейка", "Контакс" и пулеметам MG-42. Но она намного превосходила всех в организации массового производства.

Те авиамоторы, что в Англии производились селективной сборкой, в США ставились на поток. Мощное сельское хозяйство. Горная отрасль. Все это - не затронуто войной. Были еще и вкусные бонусы от перемещения глобальных финансов из Сити на Уолл-стрит. Доступ на глобальные рынки дал процветание и своему населению (не знавшему кризисов с 1929 по 2008 год) и позволил найти деньги на план Маршалла и т.п. Былые противники, Германия и Япония, стали важными частями Pax Americana, источниками высокотехнологических потребительских товаров.

Но война в Афганистане принципиально отличается от Второй мировой, прежде всего, тем, что никто не знает, как интегрировать ее население в систему мирового хозяйства, а население это растет быстрыми темпами. В те блаженные времена, когда страна эта была шахматной доской, на которой разыгрывалась партия русского царя с Виндзорской вдовой, жили там 4,5 млн. человек. В 1968 году - 16,1 млн. Ну а в 2010-м её население оценивалось в 28 миллионов. Прогноз на 2020 год - 38 миллионов душ.

Ни советское, ни НАТОвское вторжение на рост населения не повлияло. То есть людей - много, а средств производства - мало. Американцы обеспечивали стабильность в контролируемых ими регионах введением специфического налога. Собирался он с россиян, с помощью наркоманов, покупающих героин из афганского опия. Патанам и таджикам никто опиумный мак выращивать не препятствовал, "чтобы не ссориться с местным населением". Талибов же, почитавших наркобизнес грехом, загнали в горы... Правда на время, которое скоро пройдет.

Так что проблема состоит не в том, что армия США, оснащенная разведывательными и боевыми дронами, спутниковой навигацией и связью, не может выполнить боевую задачу. Беда в том, что задачи этой нет. Армию Саддама перемололи быстро, но это была законная цель. А что является законной целью в селении, живущем производством опия, да и тут конкурентоспособным только потому, что в иных краях, с более благодатным климатом и более квалифицированными аграриями, сей промысел запрещен? Кстати, опиумные войны позапрошлого столетия происходили потому, что китайское правительство пыталось защитить национального опиумопроизводителя от более дешевой индийской продукции, что не понравилось англичанам.

Индустриализировать эти края в постиндустриальном мире бессмысленно - Советский Союз пытался проделать это всерьез, отрывая ресурсы от вымирающего Нечерноземья, но успеха не добился. Сотрудники частных военных компаний, охраняющие горняков, пытающихся наладить в Афганистане добычу сырья, испытывают непередаваемые ощущения, когда с соседней горушки по ним начинает чесать крупнокалиберный ДШК, а "шилки", что бы заткнуть его, нет.

Так что бизнес этот - для любителей русской рулетки. Но незанятое и продолжающее плодиться население - есть! Пока оно живет опиумным налогом с россиян и НАТОвскими объедками. А дальше, когда янки рассядутся по своим стратолифтерам и свалят за океан, будет возврат к власти талибов, распространение их активности на коррумпированные и бедные постсоветские государства. С этими государствами у России фактически открытая граница (может и есть места, где границу с Казахстаном затруднительно пересечь на рамном полноприводном авто, но, похоже, их поискать надо).

Так что проигрыш "Войны с террором" (хотя теракты в США и не повторялись) это не проблема военных технологий, а проблема мироустройства в целом, обещающая немало сюрпризов.

Две памяти инженера Бобека

Автор: Евгений Лебеденко, Mobi.ru

Опубликовано 13 июля 2011 года

Зачастую незримый вершитель судеб во вселенной информационных технологий, отобрав шанс у одной из них, возвращает его спустя какое-то время. Мол, ну что же, тогда я был не в духе и отдал пальму первенства твоей сопернице. Зато теперь у тебя есть все шансы показать на что ты годишься. Тем более, что за прошедшее время ты наверняка настоялась, как дорогой коньяк, и проявишь себя во всей красе.

Мы настолько привыкли к тому, что в память в современных цифровых гаджетах реализована на полупроводниковых элементах, что не допускаем и мысли о том, что раньше, а уж тем более в обозримом будущем, всё может измениться, и конденсаторы с транзисторами, составляющие основу ячеек современной оперативной и флэш-памяти, уступят насиженное место побежденным ими некогда конкурентам - магнитам.

Эта история явилась результатом моего интереса к уникальным элементам памяти, которыми был оснащен удивительный во всех отношениях ноутбук из прошлого GRiD Compass 1101. В то время, когда большинство его собратьев оснащались 5,25" дисководами, GRiD Compass имел на борту то, что сейчас мы называем SSD или твердотельными накопителями. При этом сделаны они были вовсе не на полупроводниках, а также, как и дискеты менее продвинутых ноутбучных собратьев, использовали магнитную технологию. Правда, особого рода. Это было невероятно, и я захотел разобраться в этой технологии. Тогда я не знал, какую удивительную историю подарит мне моё любопытство. Историю пытливого ума, уникальной интуиции и недюжинной коммерческой смекалки одного единственного человека.

Это - рассказ о изобретении элементов памяти, использующих магнитные свойства вещества. Технологии, прожившей недолгую жизнь, преданной забвению и обретенной заново на новом витке технологической эволюции.

Властелин колец. Компьютерная память 50-х

Давайте признаем - современные технологии полупроводниковой памяти - компромисс, навязанный потребителю микроэлектронной промышленностью. Наверное, нет ничего хуже, чем формировать значение двоичной единицы, загнав толпу таких энергичных созданий, как электроны, в ловушку конденсаторов (как это происходит в микросхемах современной оперативной памяти) или транзисторных затворов (как это реализовано в памяти флэш). Мало того, что юркие электроны несмотря ни на какие затворы стараются утечь из ячейки-темницы, что требует в модулях оперативной памяти периодической перезаписи ячеек, так, выбегая из нее на свободу, они норовят нагреть всё вокруг своей неуемной энергией. Про нынешнего фаворита рынка постоянной перезаписываемой памяти - технологии флэш (неважно какого типа - NAND или NOR) и говорить не приходится. Ведь для того, чтобы загнать электроны под затвор транзистора-ячейки, требуется импульс такой силы, который ячейку эту частично и разрушает. Ограничивая тем самым количество циклов перезаписи и сделав вопрос о надежности SSD одним из самых актуальных среди поисковых запросов в интернете.

Между тем, еще со времен разработки первых цифровых ЭВМ инженерам была известна сила, в той или иной мере присущая любому веществу во Вселенной. Магнитное взаимодействие тел открыто давным-давно и достаточно хорошо изучено, чтобы понять: намагниченность объекта отлично подходит для хранения цифровой информации. Не в последнюю очередь потому, что магнетизм тесно связан с электричеством, и как породить поток тех самых электронов, используя магнетизм объекта, известно еще со времен Фарадея.

Вот почему разрабатывая прототипы памяти с произвольным доступом для первых цифровых ЭВМ, инженеры особо не задумывались о выборе технологии. Идея была проста: магнитное поле хранит бит информации, принцип электромагнитной индукции извлекает этот бит в виде импульса индукционного тока. Всё просто.

Определившись с принципом, инженеры вели эксперименты с материалами, наиболее эффективно хранящими информацию в виде остаточной намагниченности и способами ее преобразования в поток электронов.

Результатом их исследований стала память на магнитных сердечниках (magnetic core memory), где ячейкой хранения выступало кольцо из магнитно-твердого вещества феррита, в химической основе которого лежат разные соединения оксида железа.

Уникальной особенностью феррита является практически прямоугольная петля магнитного гистерезиса. Её верхняя граница соответствует остаточной намагниченности кольца, которое используют в качестве логической единицы, граница противоположной остаточной намагниченности соответствует логическому нулю.

Не будем вдаваться в подробности формирования и считывания информации из ферритового кольца - ячейки magnetic core memory, об этом можно прочитать в массе источников и даже посмотреть интерактивный курс. Остановимся на технологических проблемах, с которыми столкнулись разработчики памяти на магнитных сердечниках.

Фактически, модуль такой памяти представлял собой полотно и четырех переплетенных между собой проводов, ответственных за возбуждение магнитного поля разной направленности, считывание данных и запрета (в случае записи в ячейку логического нуля).

Ферритовые кольца располагались в перекрестье этих проводов, образовывая подобие высокотехнологичной кольчуги. И главной проблемой (если не считать необходимость поддержания определенной (обычно высокой) температуры ферритовых колец) являлась сложность плетения этой кольчуги. Очевидно, что для памяти большого объема нужно больше ячеек, что подразумевает штамповку большого числа колец и сложную процедуру их вплетения в провода. При этом делать такую феррритовую память в виде гигантского гобелена было и технически и экономически нецелесообразно.

Один из способов "плетения" памяти на магнитных сердечниках

Смешно, конечно, вывесить рядом с ЭВМ эдакий ковер и хвалиться всем: а это - наша оперативная память. Поэтому ферриторую кольчугу вплетали в небольшие по объему модули, наподобие пялец для вышивания. Наиболее известную технику плетения таких модулей емкостью 16х16 бит (емкость 256 бит) в то время разработала британская компания Mullard. Существовали вариации и побольше, например, 32х32 бита (емкость 4096 бит). Такие модули последовательно соединялись в секции, из которых монтировались так называемые ферритовые кубы - единицы памяти, подключаемые к ЭВМ.

256-битный модуль магнитной памяти от компании Mullard

Ферритовый куб в сборке

256-битный модуль магнитной памяти от компании Mullard

Очевидно, что и в процесс плетения модулей и в процесс сборки ферритовых кубов вкрадывались ошибки (работа ведь была практически ручная), что приводило к увеличению времени отладки и устранения неполадок.

Ферритовый куб в сборке

В поисках компромиссного решения инженеры решили попробовать вместо колец применить ферритовые пластины. В таких пластинах идея ферритового кольца была возведена в абсолют. По сути, вся поверхность пластины была ферритовым кольцом с множеством отверстий, сквозь которые продевались управляющие провода. Процесс изготовления памяти на ферритовых пластинах был несколько проще. Но, все-таки, это была вариация того же самого плетения памяти-кольчуги.

Именно благодаря злободневному вопросу трудоемкости разработки памяти на ферритовых кольцах у сотрудника лаборатории Bell Labs Эндрю Бобека появилась возможность проявить свой изобретательский талант.

Twistor memory. Звездный танец инженера Бобека

Телефонный гигант AT&T, тогдашний владелец Bell Labs был, как никто другой заинтересован в разработке эффективных технологий производства магнитной памяти.

Благодаря своим изобретениям Эндрю Бобек удостоен многочисленных наград от различных научных и инженерных сообществ

Всё более активное использование цифровых ЭВМ в системах коммутации каналов требовало всё большей ёмкости запоминающих устройств. Ну а поскольку базовой технологией того времени была память на магнитных кольцах, инженеры AT&T в полной мере ощутили "пределсти" создания оперативной памяти для своих машин.

Одним из этих инженеров и был Эндрю Бобек, в 1949 году пришедший на работу в Bell Labs из университета штата Индиана.

Бобек решил кардинально изменить направление исследований и предложить альтернативу экстенсивному пути совершенствования памяти на ферритовых кольцах. Первым вопросом, который он задал самому себе, был: "обязательно ли в качестве материала хранения остаточной намагниченности использовать магнитно-твердые материалы наподобие феррита?". Ведь не у них одних подходящая реализации памяти и петля магнитного гистерезиса. В технике давно известны магнитно-мягкие сплавы, обладающие подходящими свойствами. В первую очередь к ним относятся сплавы железа с никелем (пермаллой), железа с никелем и кобальтом (пермендюр) и железа с кремнием (трансформаторная сталь).

Форма петли магнитного гистерезиса различных магнитно-твердых и мягких ферромагнетиков

Бобек начал эксперименты с пермаллоем. Благодаря своим физическим свойствам, этот сплав легко раскатывался в очень тонкую фольгу, не теряя при этом своих магнитных свойств. И Бобеку пришла в голову идея: почему ячейки в магнитной памяти должны быть именно в виде колец? Ведь кольцеобразные структуры можно получить, просто навив фольгу из пермаллоя на несущий провод под необходимым для правильного намагничивания углом в сорок пять градусов. Бобек назвал такой провод твистор-кабелем, в честь модного в то время кручу-верчу танца твист (twist по-английски - "кручение").

Твистор-кабель

Навив подобным образом ленту пермаллоя на достаточно длинный провод, его можно будет свернуть так, чтобы создать зигзагообразную матрицу параллельных twistor-кабелей. Теперь эту мартицу можно запаковать, например, в полиэтиленовую пленку, и массив пермаллоевых псевдоколец продетых через один из несущих проводов уже есть. Второй провод Бобек предложил заменить медной шиной, на который укладывался запакованная в полиэтилен матрица твистор-кабелей. На пересечениях шины и твистор-кабеля располагались небольшие постоянные магниты, поддерживающие необходимое магнитное поле.

Упрощенная схема твистор памяти



Поделиться книгой:

На главную
Назад