Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Краткая история биологии - Айзек Азимов на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Свой эксперимент Беринг проводил при участии Эрлиха, который, по-видимому, разработал конкретную дозировку и способы лечения. В дальнейшем Эрлих выполнял исследования самостоятельно, тщательно отшлифовывая методы использования сыворотки. Его по праву можно считать основателем серологии — учения о физических, химических и биологических свойствах сыворотки крови и о методах ее приготовления. Когда эти методы ставят целью создание невосприимчивости к заболеванию, наука называется иммунологией.

Бельгийский бактериолог Жюль Борде (1870–1939) был другим крупным серологом, внесшим большой вклад в становление этой науки. В 1898 г., работая в Париже под руководством И. И. Мечникова, он открыл, что антитела, присутствующие в нагретой до 55 °C сыворотке крови, по существу, остаются неизменными, сохраняя способность соединяться с теми же веществами (антигенами), с которыми они соединялись до нагревания. Однако способность сыворотки поражать бактерии исчезает. Возникло предположение, что какой-то очень нестойкий компонент (или группа компонентов) сыворотки действует в качестве дополнения (комплемента) к антителу, прежде чем последнее вступает в борьбу с бактерией. Борде назвал этот компонент алексином, а Эрлих — комплементом; последнее название принято и сейчас.

В 1901 г. Борде показал, что, если антитело реагирует с антигеном (чужеродным белком), комплемент истощается. Такой процесс фиксации комплемента оказался важным для диагностики сифилиса. Эта диагностика была разработана в 1906 г. немецким бактериологом Августом фон Вассерманом (1866–1925) и до сих пор известна как реакция Вассермана.

В реакции Вассермана сыворотка крови больного реагирует с определенными антигенами. Если в сыворотке содержатся антитела против возбудителя сифилиса, реакция осуществляется и комплемент исчезает. Утрата комплемента означает положительную реакцию на сифилис. Если комплемент не теряется, реакции не происходит и, следовательно, сифилиса у пациента нет.

Группы крови

Успехи серологии принесли в начале XX в. довольно неожиданные плоды: были открыты индивидуальные различия человеческой крови.

На протяжении всей истории врачи пытались возместить потерю крови путем ее переливания. Кровь здорового человека или даже животного вводилась в вену больного. Несмотря на отдельные случайные успехи, лечение, как правило, приводило к летальному исходу. Поэтому в большинстве европейских стран к концу XIX в. переливание крови было запрещено.

Австрийский врач Карл Ландштейнер (1868–1943) нашел ключ к решению проблемы. В 1900 г. он открыл, что кровь человека варьирует по способности сыворотки к агглютинации (склеиванию в комочки и выпаданию в осадок) красных кровяных телец (эритроцитов). Сыворотка крови одного человека может склеить эритроциты человека А, но не В, сыворотка другого, наоборот, — склеить эритроциты человека В, но не А. Существует сыворотка, которая склеивает эритроциты и А и В, и такая, которая вообще не склеивает эритроцитов. В 1902 г. Ландштейнер разделил человеческую кровь на четыре группы, или типа, которые он назвал А, В, АВ и 0.

Теперь нетрудно понять, что переливание крови в одних комбинациях безопасно, а в других вызывает смертельный исход, так как вводимые эритроциты могут агглютинировать с эритроцитами больного. Переливание крови при тщательном предварительном определении групп крови больного и донора сразу стало важным помощником в медицинской практике.

В последующие сорок лет Ландштейнер и другие ученые открыли такие группы крови, которые индифферентны при переливании крови. Все группы крови передаются по наследству в соответствии с менделевскими законами наследственности. Это обстоятельство в настоящее время используют при установлении отцовства. Так, например, родители с группой крови А не могут иметь ребенка с группой крови В.

Кроме того, открытие групп крови позволило выдвинуть приемлемое объяснение вековой проблемы рас. Люди всегда делили своих собратьев на некие группы; разумеется, авторы такого деления, лишенные всяких объективных критериев, себя обычно зачисляли в высшую группу. Даже в наше время неспециалисты склонны делить человечество на расы лишь на основе цвета кожи.

Бельгийский астроном Ламберт Адольф Жак Кетле (1796–1874) впервые показал, что различия между человеческими индивидуумами постепенны и не очень резки. Они скорее количественные, чем качественные. Кетле использовал статистические методы для изучения людей, что позволяет считать его основателем антропологии (учения о естественной истории человека).

Кетле изучал результаты измерения объема груди шотландских солдат, данные о росте рекрутов французской армии и т. п. и в 1835 г. пришел к выводу, что отклонения этих показателей от средней величины столь же закономерны, как и падение игральных костей или распределение пулевых отверстий вокруг центра мишени. Иначе говоря, было показано, что жизнь течет по тем же законам, которые управляют и неодушевленным миром.

Шведский анатом Андерс Адольф Ретциус (1796–1860) предложил классифицировать расы по форме черепа. Отношение ширины черепа к его длине, помноженное на 100, он назвал краниальным (черепным) индексом. Если краниальный индекс меньше 80, перед вами — долихоцефал (длинноголовый); если он превышает 80 — брахицефал (широкоголовый). Европейцев он делил на представителей северной расы (высокие и длинноголовые), средиземноморской (невысокие и длинноголовые) и альпийской (невысокие и широкоголовые).

Но в действительности все это не так просто: различия очень малы, за пределами Европы они вообще стираются, наконец, краниальный индекс не строго фиксирован в наследственности и может меняться из-за недостатка витаминов и под влиянием окружающей среды, в которой живет ребенок.

Однако с установлением групп крови открылась заманчивая возможность использовать их для классификации популяций человека. Во-первых, группы крови не являются видимыми признаками. Они истинно врожденные и не поддаются влиянию окружающей среды, свободно смешиваются в последующих поколениях, поскольку при выборе супруга люди вовсе не задумываются над тем, какая у него (или у нее) группа крови.

Ни одна группа крови в отдельности не может быть использована для различения рас, но встречаемость разных групп крови приобретает значение при сравнении большого числа людей. Можно считать, что приоритет в этой ветви антропологии принадлежит американскому иммунологу Уильяму Клоузеру Бойду (род. в 1903 г.). В 30-х годах он пытался выявить тип крови у населения различных частей света. На основании полученных сведений и литературных данных в 1956 г. Бойд подразделил человечество на тринадцать групп. Большинство групп соответствовало географическим делениям. К его удивлению, выявилась древняя европейская раса, характеризующаяся необычно высокой встречаемостью группы крови, называемой Rh-отрицательной (резус-отрицательной). Древние европейцы были вытеснены современными народами Европы, но их потомки (баски) сохранились и до наших дней в нагорьях Западных Пиренеев.

По встречаемости групп крови можно проследить миграции народов доисторического и даже близкого к нам времени. Например, процент группы крови В наиболее высок среди жителей Центральной Азии и прогрессивно уменьшается на запад и восток. Но в Западной Европе все же встречаются люди с группой крови В. Предполагают, что это результат периодических вторжений в Европу кочевников Центральной Азии — гуннов и монголов.

Вирусные заболевания

Наиболее значительные успехи в борьбе с микроорганизмами, не известными во времена Пастера и Коха, были сделаны в XX в. Пастеру не удалось отыскать возбудителя бешенства, заболевания явно инфекционного и, согласно его теории, вызываемого микроорганизмом. Пастер полагал, что этот микроб слишком мал и именно поэтому его не удавалось найти с помощью существовавших в то время приборов. Как выяснилось позже, Пастер был прав.

Инфекционный возбудитель может быть гораздо меньше обычной бактерии. Впервые в этом убедились при изучении мозаичной болезни табака. Оказалось, что сок больных растений заражает здоровые. В 1892 г. русский ботаник Дмитрий Иосифович Ивановский (1864–1920) установил, что сок сохраняет свои инфекционные свойства, даже если его пропустить через фильтры, задерживающие все известные бактерии. В 1895 г. к этому же открытию пришел голландский ботаник Мартин Виллем Бейеринк (1851–1931). Бейеринк назвал инфекционный агент фильтрующимся вирусом, понимая под словом «вирус» просто ядовитое вещество. Эти открытия двух ученых легли в основу науки вирусологии.

Оказалось, что и некоторые другие заболевания вызываются фильтрующимися вирусами. Немецкий бактериолог Фридрих Леффлер (1852–1915) в 1898 г. установил, что фильтрующимся вирусом вызывается ящур крупного рогатого скота, а в 1901 г. Рид доказал то же самое в отношении желтой лихорадки. Такие заболевания, как полиомиелит, сыпной тиф, корь, свинка (эпидемический паротит), ветряная оспа, грипп и заразный насморк (common cold), также оказались вирусными.

Интересное научное открытие было сделано в 1915 г. Английский бактериолог Фредерик Уильям Творт (1877–1950), проводя свои наблюдения за колониями бактерий, обнаружил, что некоторые из них постепенно как бы окутываются туманом, а затем и вовсе исчезают. Он профильтровал раствор с исчезнувшими колониями, и оказалось, что в фильтрате содержится нечто вызывающее гибель колоний. Очевидно, и у бактерий имеются вирусные болезни: паразиты становятся жертвами еще более мелких паразитов. Канадский бактериолог Феликс д'Эрелль (1873–1949) в 1917 г. повторил это открытие. Он назвал вирусы, поражающие бактерий, бактериофагами, что значит «пожиратели бактерий».

Пока еще никто не может сказать, подлежит ли включению в список заболеваний, вызываемых вирусами, рак. Роль рака — одной из самых распространенных смертельных болезней нашего столетия — неуклонно растет, он уносит все больше человеческих жизней. Медленное неумолимое разрастание раковой опухоли, обычно затяжная и мучительная смерть сделали рак одной из болезней, которые наводят ужас на человечество.

В период первых успехов микробной теории болезней полагали, что и рак — бактериальное заболевание, но найти вызывающие его бактерии не удавалось. После открытия вирусов стали искать раковый вирус, но опять-таки безуспешно. Все это в сочетании с тем, что рак не заразен, склонило многих ученых к мысли, что он вообще не микробного происхождения.

Может быть, это и так, однако не следует забывать, что, хотя вирус рака до сих пор не обнаружен, для отдельных видов рака открыты особые вирусоподобные агенты. В 1911 г. американский врач Фрэнсис Пейтон Раус (род. в 1879 г.) изучал куриную опухоль, называемую саркомой. Выясняя, нет ли в саркоме особого вируса, Раус профильтровал раковую вытяжку — оказалось, что фильтрат вызывает образование опухолей у здоровых кур. Утверждать, что открыт вирус рака, сам Раус не решился, но за него это сделали другие.

В течение почти четверти века вирус куриной саркомы Рауса был единственным четким примером инфекционного фактора, способного вызвать рак. Однако после 1930 г. появились и другие примеры. Несмотря на это, наука, изучающая опухоли, их предупреждение и лечение (онкология), является самым неясным разделом медицины.

Хотя физическая природа вирусов в течение почти сорока лет после их открытия оставалась неизвестной, это не мешало предпринимать возможные шаги на пути лечения вирусных заболеваний. Оспа, по существу, первое полностью ликвидированное вирусное заболевание. Вакцинация против оспы стимулирует организм к выработке антител, специфически направленных против вируса оспы. Естественно предположить, что для каждого вирусного заболевания существует свой серологический метод лечения.

Трудность состоит в том, что надо найти такой штамм вируса, который, вызывая слабые проявления болезни, в то же время стимулировал бы выработку антител против вирулентных штаммов (по аналогии с функцией, выполняемой штаммом коровьей оспы). Сходные методы были использованы Пастером в борьбе с бактериальными заболеваниями, но культивировать бактерии и получать ослабленные бактериальные штаммы сравнительно просто.

Вирусы, к сожалению, размножаются только в живых клетках, и это еще более осложняет решение проблемы. Так, вакцина против желтой лихорадки была получена в 30-е годы южноафриканским микробиологом Максом Тейлером (род. в 1899 г.) после длительных внутримозговых пассажей (серии последовательных заражений) вируса, сначала на обезьянах, а затем на белых мышах. У мышей вирус желтой лихорадки вызывал энцефалит — воспаление головного мозга. После длительного пассирования вируса на мышах Тейлер вновь привил его обезьянам. К этому времени вирус был уже ослаблен, и обезьяны страдали лишь очень слабыми приступами желтой лихорадки. Но у животных вырабатывалась полная невосприимчивость к большинству вирулентных штаммов вируса.

Между тем американский врач Эрнест Вильям Гудпасчер (1886–1960) открыл своего рода живой аналог питательного бульона Коха. В 1931 г. он предложил использовать в качестве питательной среды для вирусов развивающиеся куриные эмбрионы. Если удалить верхушку скорлупы, оставшаяся часть яйца служит как бы естественной чашкой Петри. В 1936 г. Тейлор создал еще более безвредную вакцину против желтой лихорадки, отобрав ослабленный вирусный штамм из штаммов, длительно пассированных (до 200 раз) в культуре ткани куриного эмбриона.

Наиболее ярко успех нового серологического метода проявился в борьбе с полиомиелитом. Вирус полиомиелита был выделен в 1908 г. Ландштейнером, впервые заразившим этой болезнью обезьян. Однако обезьяны — малопригодный объект для поисков ослабленного штама из-за дороговизны и трудности содержания большого числа животных.

Американский микробиолог Джон Франклин Эндерс (род. в 1897 г.) с двумя молодыми помощниками, Томасом Хаклом Веллером (род. в 1915 г.) и Фредериком Чапманом Роббинсом (род. в 1916 г.), в 1948 г. попытался культивировать вирусы в среде из измельченных куриных эмбрионов и крови. Подобные попытки делались и раньше, но всегда оканчивались неудачей, поскольку культура вируса вытеснялась быстро размножающимися бактериями. Однако Эндерс добавил к среде открытый незадолго до этого пенициллин. Последний приостанавливал рост бактерий, никак не влияя на вирус. Вначале Эндерсу удалось успешно культивировать вирус паротита, а затем вирус полиомиелита (1949). Появилась возможность выращивать вирус полиомиелита в достаточном количестве, а значит, и надежда напасть среди сотен штаммов на ослабленный с желательными свойствами. Американский микробиолог Альберт Брусс Сейбин (род. в 1906 г.) успешно селекционировал и очистил к 1957 г. три типа ослабленных вакцинных штаммов для каждого из трех разновидностей полиомиелита и создал эффективную живую вакцину.

Согласно последним данным, Эндерс со своим помощником Самуэлем Лоуренсом Кацем (род. в 1927 г.) в начале 60-х годов нашел пригодный для изготовления вакцины ослабленный штамм вируса кори, что, вероятно, поможет покончить и с этой детской болезнью.

Аллергия

Механизм иммунитета не всегда используется, как нам кажется, наиболее рациональным образом. Организм может развить способность к выработке антител против любого чужеродного белка, даже против такого, который на первый взгляд безвреден. Если организм сенсибилизирован (то есть его чувствительность повышена), он реагирует на контакт с белками различными симптомами: отеком слизистых оболочек носа, чрезмерной выработкой слизи, кашлем, чиханием, слезотечением, сужением бронхиол легких (астма). Такая реакция организма называется аллергией. Часто причиной аллергии бывает присутствие какого-либо пищевого компонента или некоторых видов цветочной пыльцы (так называемая сенная лихорадка).

Даже белки других людей являются чужеродными для данного индивидуума, и организм вырабатывает против них антитела. Из этого можно заключить, что каждый человек (за исключением близнецов) представляет собой химически особое существо. Именно поэтому заканчиваются неудачей попытки пересадить кожу или какой-либо орган от одного человека к другому. Организм больного, которому сделали пересадку, вырабатывает антитела, стараясь избавиться от чужеродного органа или ткани. Аналогичные трудности возникают при переливании крови, но пересадка связана с дополнительными, еще более сложными проблемами, так как ткани в отличие от крови человека невозможно классифицировать на ряд основных типов.

Это тем более досадно, что биологи научились поддерживать в течение некоторого времени жизнедеятельность изолированных частей тела. Так, сердце, удаленное у подопытного животного, можно заставить пульсировать еще довольно долго. В 1882 г. английский врач Сидней Рингер (1834–1910) предложил раствор, близкий по составу неорганических солей к плазме крови. Этот раствор, выполняя роль искусственной питательной жидкости, способен в течение достаточно длительного времени поддерживать жизнедеятельность изолированного органа.

Искусство сохранения органов жизнеспособными в питательной среде точного ионного состава довел до совершенства французский хирург Алексис Каррель (1873–1944). Он поддерживал рост клеток сердечной ткани куриного эмбриона в течение более двадцати лет.

Из этого следует, что трансплантация (пересадка) органа была бы успешной, если бы организм в ответ на нее не вырабатывал враждебных антител. И все же некоторые достижения имеются уже и сегодня. В повседневную практику вошла пересадка роговицы глаза; в Советском Союзе начиная с 1960 г. успешно производятся единичные пересадки почек.

В 1949 г. австралийский вирусолог Франк Барнет (род. в 1899 г.) выступил с утверждением, что способность организма к выработке антител против чужеродных белков не врожденная, а развивается в процессе жизни, хотя и может проявиться довольно рано. Английский биолог Питер Брайн Медавор (род. в 1915 г.) привил мышиным эмбрионам клетки мышиных же тканей, но от мышей другой линии (не имевших общих предков). Итак, если эмбрионы не способны образовывать антитела, то к тому времени, когда они начнут самостоятельную жизнь и приобретут эту способность, привитые им белки уже не должны быть чужеродными. И действительно, оказалось, что взрослые мыши, привитые в эмбриональном состоянии, в отличие от непривитых принимали пересадку кожи от мышей другой линии.

В 1961 г. открыли источник способности организма вырабатывать антитела. Им оказалась зобная железа, где продуцируются лимфоциты (род белых кровяных клеток), в функцию которых входит образование антител. Сразу после рождения человека лимфоциты направляются в лимфоузлы и в кровяное русло. Через некоторое время лимфоузлы уже могут существовать сами по себе, а тимус по достижении человеком половой зрелости сокращается и исчезает. Сейчас еще трудно сказать, какое влияние окажет это открытие на возможность пересадки органов.

Глава XII

Обмен веществ

Химиотерапия

Борьба с бактериальными заболеваниями в некотором отношении проще, чем с вирусными. В предыдущей главе мы уже говорили, что бактерии легче поддаются культивированию. Кроме того, они более уязвимы. Бактерии существуют вне клеток «хозяина» и оказывают свое вредоносное действие, либо конкурируя с ними в пище, либо выделяя токсины. Однако их обмен веществ, как правило, отличается от обмена веществ клеток «хозяина». Поэтому у нас всегда есть возможность воздействовать на бактерии теми химическими веществами, которые нарушат их обмен веществ, не влияя сколько-нибудь существенно на клеточный обмен веществ.

Использование химических лекарственных средств для борьбы с болезнями восходит к доисторическим временам. Лечение травами и отварами приносит порой положительные результаты и в наши дни. Опыт приготовления таких лекарств лекари-«травники» передавали из поколения в поколение. Например, хинин применялся сначала как народное средство против малярийного паразита, а позже его взяли на вооружение профессиональные медики.

Появление синтетических препаратов дало возможность подбирать для каждой болезни специфическое лекарственное вещество. Пионером в этой области был Эрлих — он называл такие лекарства «волшебными пулями», отыскивающими и убивающими микроба, не принося никакого вреда клеткам тела больного.

Эрлих работал с красителями бактерий. Зная, что эти краски вступают в специфические соединения с определенными составными частями бактериальных клеток, ученый попытался установить, нельзя ли ими разрушить рабочий механизм бактерий. Ему и в самом деле удалось найти краситель — трипановый красный, который разрушал трипаносом, — правда, они относятся к простейшим, а не к бактериям, но это не меняет дела.

Однако Эрлих на этом не остановился. Он справедливо рассудил, что действие трипанового красного обусловлено сочетаниями атомов азота, входящих в состав красителя. Атомы мышьяка по своим химическим свойствам сходны с атомами азота, но в соединениях более ядовиты. И Эрлих стал испытывать — одно за другим — все мышьяксодержащие органические вещества, которые в то время можно было достать или синтезировать.

В 1909 г. один из его помощников обнаружил, что соединение, известное в лаборатории под № 606, будучи не очень эффективным против трипаносом, дало превосходные результаты на возбудителе сифилиса. Эрлих назвал это лекарство сальварсаном и посвятил остаток своей жизни улучшению метода его использования для лечения сифилиса.

С получения трипанового красного и сальварсана ведет свое начало современная химиотерапия, то есть лечение химическими препаратами (термин предложен Эрлихом). Ученые возлагали большие надежды на то, что и другие заболевания удастся лечить аналогичным способом. К сожалению, в течение 25 лет после обнаружения эффективного действия сальварсана исследователям не удалось извлечь ничего полезного из огромного списка синтетических органических веществ.

Но прошло время, и судьба вновь улыбнулась медикам. Немецкий биохимик и врач Герхардт Домагк (род. в 1895 г.), работавший по заданию фирмы по производству красителей, начал систематически испытывать новые красители в надежде использовать некоторые из них в медицине. Одним из вновь созданных препаратов был пронтозил. В 1932 г. Домагк обнаружил, что инъекция этого красителя оказывает сильнейшее действие на стрептококковую инфекцию у белых мышей.

Вскоре ему пришлось проверить этот препарат на собственной дочери, которая, уколовшись иглой, внесла в организм стрептококковую инфекцию. Никакое лечение не помогало, и Домагк в отчаянии ввел ей большую дозу пронтозила. Больная быстро пошла на поправку, и в 1935 г. мир узнал о новом лекарстве.

Незадолго до этого группа французских бактериологов установила, что антибактериальное действие пронтозила связано с наличием в его молекуле остатка сульфаниламида (соединения, известного химикам еще с 1908 г.). Использование пронтозила и других сульфаниламидных препаратов ознаменовало целую плеяду «чудесных лекарств». Множество инфекционных болезней, особенно некоторые разновидности пневмонии, перестали угрожать жизни человека.

Ученые долго не могли найти лекарственных веществ для борьбы с туберкулезными бациллами. И только в 1952 г. немецким и американским исследователям удалось обнаружить, что гидразид изоникотиновой кислоты (тубазид) удивительно эффективно излечивает от туберкулеза. С тех пор тубазид и его производные стали повсеместно применяться в борьбе с туберкулезом.

Антибиотики и пестициды

И все же крупнейшие достижения химиотерапии связаны не с синтетическими лекарствами типа сальварсана и сульфаниламида, а с природными веществами. Американский микробиолог Рене Жюль Дюбо (род. в 1901 г.) на протяжении многих лет изучал почвенные микроорганизмы. Как известно, в почву попадают трупы животных, пораженных различными заболеваниями, но, за очень редким исключением, сама почва не является источником инфекций. Это, очевидно, объясняется тем, что в ней существуют какие-то антимикробные агенты. (Такие агенты впоследствии получили название антибиотиков, что означает «против жизни».)

В 1939 г. Дюбо выделил из почвенных бактерий кристаллическое вещество тиротрицин, состоящее из двух антибиотиков, впоследствии названных грамицидином и тироцидином. Хотя сам по себе тиротрицин не был очень эффективным агентом, он возродил интерес ученых к открытию, сделанному десятью годами раньше шотландским бактериологом Александером Флемингом (1881–1955).

Работая с культурой стафилококка, Флеминг случайно оставил ее на несколько дней открытой. Он уже совсем собирался ее выбросить, когда заметил, что туда попали споры плесени и вокруг каждой плесневой колонии стафилококковые бактерии отсутствуют.

Флеминг выделил эту плесень и отнес ее к виду Penicillium notatum, близкому к обычной плесени, которая часто появляется на черством хлебе. Ученый пришел к выводу, что плесень выделяет какое-то вещество, угнетающее рост бактерий, и назвал это вещество пенициллином. На основе тщательного изучения он показал, что пенициллин воздействует на одни бактерии и не влияет на другие, абсолютно безвреден для лейкоцитов и, по-видимому, для других клеток человеческого организма. Дальше этих выводов Флеминг не пошел[6].

Открытие Дюбо возродило интерес к антибиотикам, одним из представителей которых был пенициллин. Кроме того, начавшаяся вторая мировая война настоятельно требовала эффективных средств для борьбы с раневыми инфекциями. Именно поэтому английский патолог Говард Уолтер Флори (род. в 1898 г.) совместно с английским биохимиком Эрнстом Чейном (род. в 1906 г.) пытался разрешить проблему выделения пенициллина, определить его структуру и найти промышленные способы его получения. К концу войны оба эти ученые возглавили большую группу исследователей и добились блестящих успехов. Пенициллин стал и посейчас остается самым популярным лекарством в борьбе с инфекционными заболеваниями.

Послевоенные исследования привели к открытию и других антибиотиков. Так, американский бактериолог Соломон Ваксман (род. в 1888 г.), которому принадлежит термин «антибиотик», столь же систематически исследовал почвенные микробы, как в свое время Эрлих — синтетические вещества. В 1943 г. ему удалось выделить антибиотик, оказавшийся эффективным против тех бактерий, на которые не действовал пенициллин. Через два года этот антибиотик поступил в широкую продажу под названием стрептомицина.

В начале 50-х годов были открыты антибиотики широкого спектра действия (то есть подавляющие развитие многих видов бактерий), группа тетрациклинов — ауреомицин, террамицин, тетрациклин.

С появлением антибиотиков борьба против бактериальных заболеваний достигла таких успехов, которые каких-нибудь два-три десятилетия назад казались невероятными. А между тем будущее не сулит радужных перспектив. В результате естественного отбора выживают только те штаммы бактерий, которые имеют естественную устойчивость к антибиотикам. Поэтому со временем отдельные антибиотики теряют свою эффективность. Несомненно, в дальнейшем будут открыты новые антибиотики, однако о полной победе пока говорить не приходится, да, возможно, ее и не будет.

Химиотерапевтические средства, как правило, не действуют на вирусы. Последние размножаются внутри живой клетки; чтобы уничтожить их химическим воздействием, придется уничтожить саму клетку. Однако успеха можно добиться, уничтожая многоклеточных живых существ — носителей патогенного для человека вируса.

Так, вирус сыпного тифа переносит платяная вошь, от которой гораздо труднее избавиться, чем, скажем, от свободно живущего комара. Тиф — чрезвычайно опасная болезнь: на фронтах первой мировой войны от эпидемии сыпного тифа нередко гибло больше солдат, чем от вражеской артиллерии.

1935 г. швейцарский химик Пауль Мюллер (род. в 1899 г.) приступил к поискам органических соединений, способных быстро уничтожать насекомых, не угрожая жизни других животных. В сентябре 1939 г. он окончательно установил, что для этой цели лучше всего подходит 4,4-дихлордифенилтрихлорэтан (сокращенно ДДТ), впервые синтезированный в 1874 г. В 1942 г. началось промышленное производство ДДТ, а уже через год этот препарат использовали во время эпидемии сыпного тифа в Неаполе (эпидемия вспыхнула вскоре после оккупации города англо-американскими войсками). В результате применения нового препарата насекомые погибли, и впервые в истории эпидемия тифа была быстро ликвидирована. Аналогичная картина наблюдалась в конце 1945 г. в Японии.

После второй мировой войны ДДТ и другие органические инсектициды стали применяться не только с целью предотвращения эпидемий, но и для спасения урожая от насекомых. Вскоре вещества, уничтожающие сорняки и насекомых, были объединены в группу пестицидов. Следует, однако, отметить, что, по мере того как у насекомых вырабатывается устойчивость к химическим препаратам, пестициды теряют свою эффективность. Более того, в результате беспорядочного использования пестицидов уничтожаются огромные количества безвредных для человека организмов и тем самым нарушается равновесие в природе. Следовательно, излишнее увлечение пестицидами может принести больше вреда, чем пользы.

Это весьма серьезная проблема. Учение о взаимосвязи живых организмов с окружающей средой и друг с другом (экология) является областью биологии, где слишком много нерешенных проблем. В погоне за кратковременной выгодой человечество меняет окружающую среду, но кто знает, возможно, даже незначительные на первый взгляд изменения в конечном итоге приведут к необратимым потерям.

Продукты промежуточного обмена

Различные химические агенты, действуя на насекомых, сорняки и микробы, нарушают их обмен веществ, иными словами, осуществляют в организме «диверсию» в отношении его химических механизмов. Поиски таких агентов становятся все более эффективными, по мере того как проясняется вопрос о характере процесса обмена веществ.

В этом отношении нельзя пройти мимо заслуг английского биохимика Артура Хардена (1865–1940), который занимался ферментами дрожжевой вытяжки (напомним: Бухнеру удалось доказать, что эта вытяжка не менее активно расщепляет сахара, чем сами дрожжевые клетки). Еще в начале нынешнего столетия (1905) Харден обратил внимание, что дрожжевой экстракт вызывает бурный распад сахара и выделение углекислоты, причем активность процесса со временем снижается. На первый взгляд могло показаться, что эта реакция связана с истощением ферментов в экстракте, но добавлением в раствор небольшого количества фосфата натрия (простое неорганическое соединение) Хардену удалось активизировать действие фермента.

Концентрация неорганического фосфата в процессе ферментативной реакции падает, поэтому Харден стал искать в растворе какое-нибудь органическое соединение фосфора, возникающее, как он полагал, из неорганического фосфата. Им оказалась молекула сахара с двумя присоединившимися фосфатными группами. Открытие Хардена положило начало изучению промежуточного обмена веществ, поискам многочисленных (иногда очень кратковременных) соединений, которые образуются в процессе химических реакций в тканях организма.

Попробуем вкратце рассказать об основных направлениях этих поисков. Немецкий биохимик Отто Фриц Мейергоф (1884–1951) в опытах, которые он проводил после окончания первой мировой войны, обнаружил, что мышечное сокращение приводит к исчезновению гликогена (разновидность крахмала) и появлению определенного количества молочной кислоты. Характерно, что этот процесс происходит без поглощения кислорода. Во время отдыха мышцы часть молочной кислоты окисляется (при этом для покрытия «кислородной задолженности» поглощается молекулярный кислород), а возникающая таким образом энергия дает возможность большей части молочной кислоты вновь превратиться в гликоген. К аналогичному выводу пришел английский физиолог Арчибалд Вивьен Хилл (род. в 1886 г.), проводя опыты по определению количества тепла, образующегося в момент сокращения мышцы.

В 30-е годы американский биохимик Карл Фердинанд Кори (род. 1896 г.) и его жена Герти Тереза Кори (1896–1957) тщательно изучили детали превращения гликогена в молочную кислоту. Выделив из мышечной ткани неизвестное до того времени соединение — глюкозо-1-фосфат (которое теперь называется эфиром Кори), они показали, что это первый продукт распада гликогена. Супруги Кори проследили превращение глюкозо-1-фосфата в серию промежуточных продуктов и установили место каждого в цепи распада. Оказалось, что одним из промежуточных продуктов и является тот самый фосфат сахара, на который впервые указывал Харден несколько десятилетий назад.

Тот факт, что Харден и Кори в поисках продуктов промежуточного обмена натолкнулись на фосфатсодержащие органические соединения, имеет большое значение. Тем самым была установлена важная роль фосфатной группы во многих механизмах биохимических процессов. Американский биохимик Фриц Альберт Липман (род. в 1899 г.) дал объяснение этому явлению. По его мнению, фосфатная группа может занимать в молекуле одно из двух положений — с низкой энергией и с высокой. Энергия, высвобождаемая при распаде молекул крахмала или жира, используется для превращения низкоэнергетических фосфатов в высокоэнергетические. Так происходит сохранение энергии в удобной организму химической форме. Распад высокоэнергетических фосфатов высвобождает количество энергии, достаточное для осуществления различных химических превращений, идущих с поглощением энергии[7].

Те же стадии распада гликогена, которые наступают после расщепления молочной кислоты и происходят с участием кислорода, можно изучать с помощью метода, разработанного и примененного в 1923 г. немецким биохимиком Отто Гейнрихом Варбургом (род. в 1883 г.). Метод Варбурга позволяет измерять потребление кислорода тонкими срезами живых тканей. Опыты проводят следующим образом: на донышко тонкой U-образной трубки, к которой прикреплена маленькая колба, наливают окрашенный раствор. Углекислота, выделяемая тканями, поглощается щелочным раствором в колбе. Поскольку поглощение кислорода тканями происходит без замещения углекислотой, в колбе создается частичный вакуум и жидкость в U-образной трубке всасывается вверх, по направлению к колбе. Скорость потребления кислорода определяется темпом изменения уровня жидкости, измеряемым в строго контролируемых условиях.

Метод Варбурга позволил изучить влияние различных соединений на потребление кислорода. Соединение, восстанавливающее уровень жидкости после его падения, можно считать промежуточным продуктом в серии реакций, связанных с потреблением кислорода. В этой области большая заслуга принадлежит венгерскому биохимику Альберту Сент-Дьердю (род. в 1893 г.) и английскому биохимику Гансу Адольфу Кребсу (род. в 1900 г.). К 1940 г. Кребс выявил все основные этапы превращения молочной кислоты до углекислоты и воды; последовательность этих реакций часто называют циклом Кребса. Еще раньше Кребс изучал основные стадии образования продукта выделения — мочевины — из входящих в состав белков аминокислот. Он установил, что при этом происходит отщепление азота и остатки молекул аминокислот распадаются, выделяя нужную энергию. Тем самым Кребс подтвердил справедливость гипотезы Рубнера, выдвинутой почти за 50 лет до него.

Изучение внутреннего химизма клеток позволило ученым расширить представления о тонкой структуре клетки. В начале 30-х годов появился первый электронный микроскоп. Его отличие от обычного, светового микроскопа заключается в том, что вместо световых лучей в нем используются электронные. Это во много раз увеличивает его разрешающую способность. Американский физик Владимир Зворыкин (род. в 1889 г.) усовершенствовал электронный микроскоп, приспособив его для нужд цитологии. Стали видны частицы, не превышающие по размеру крупных молекул. Было обнаружено, что протоплазма клетки — это комплекс мелких высокоорганизованных структур, получивших название органелл, или частиц.

С помощью разработанных в 40-х годах методик удалось расчленить клетку и выделить из ее протоплазмы различные органеллы. Самые крупные из них — митохондрии. В типичной клетке печени содержится до тысячи митохондрий — палочковидных образований длиной 0,002–0,005 мм. Детальное изучение органелл, проведенное американским биохимиком Дэвидом Эзрой Грином (род. в 1910 г.) и его сотрудниками, показало, что именно в митохондриях протекают реакции цикла Кребса. В самом деле, здесь идут все реакции с участием катализирующих ферментрв, связанные с использованием молекулярного кислорода. Таким образом, оказалось, что маленькая органелла является своеобразной энергетической станцией клетки.


Рис. 5. Современная схема строения клетки, основанная на наблюдениях в электронном микроскопе.

Радиоактивные изотопы

Изучению сложной цепи реакций обмена веществ в значительной мере помогло использование особых атомов, названных изотопами. На протяжении первой трети XX в. физики обнаружили, что большая часть элементов имеет несколько изотопов. Организм особой разницы между ними не чувствует, но лабораторные приборы чутко реагируют на нее.

Впервые широко использовал изотопы в биохимических исследованиях американский ученый Рудольф Шенгеймер (1898–1941). В 1935 г. исследователям стал доступен редко встречающийся изотоп водорода (дейтерий), который вдвое тяжелее обычного водорода. Шенгеймер синтезировал молекулы жира, в которых заменил обычный водород тяжелым водородом, или дейтерием, а затем скормил эти жиры лабораторным животным. Таким образом в ткани животных был введен тяжелый водород, на который они реагировали так же, как и на обычный. Анализы животных жиров, содержащих дейтерий, дали поразительные результаты.

В то время ученые полагали, что запасы жиров в организме в основном неподвижны и мобилизуются только при голодании. Однако, исследовав состав жировой ткани крыс, получивших дейтерий, Шенгеймер обнаружил, что на четвертые сутки в тканях содержалась почти половина скормленного с пищей дейтерия. Другими словами, поглощенный жир откладывается, а ранее отложенный используется, то есть имеет место быстрый и непрерывный круговорот веществ, входящих в состав организма. Аналогичные результаты отмечались и в опытах с мечеными аминокислотами, в которых Шенгеймер использовал изотоп азота (тяжелый азот). Он кормил крыс смесью аминокислот, из которых лишь одна была меченая, и вскоре обнаружил, что мечеными оказались все аминокислоты. На основе этих исследований Шенгеймера были выдвинуты новые представления о динамическом состоянии всех составных частей организма.

В принципе можно проследить весь порядок обмена, последовательно используя различные соединения с изотопами. Легче всего это сделать с помощью радиоактивных изотопов, атомы которых отличаются не только весом, но и способностью к распаду с выделением высокоподвижных энергетических частиц. Эти частицы легко обнаружить, поэтому для опыта можно ограничиться минимальным количеством радиоактивных изотопов. Созданные после окончания второй мировой войны ядерные реакторы позволили широко получать радиоактивные изотопы. Кроме того, был открыт радиоактивный изотоп углерода (углерод-14), который оказался чрезвычайно полезным для исследований.

Радиоактивные изотопы помогли американскому биохимику Мелвину Кэлвину (род. в 1911 г.) выявить тончайшие детали последовательных реакций процесса фотосинтеза, посредством которого зеленые растения превращают солнечный свет в химическую энергию и снабжают животный мир пищей и кислородом. Кэлвин в течение нескольких секунд давал микроскопическим растительным клеткам доступ к углекислоте на свету и затем убивал их. К этому моменту успевали, по-видимому, завершиться лишь первые этапы фотосинтеза. Затем он измельчал клетки и разделял их на составные части, используя метод хроматографии на бумаге (о котором мы расскажем подробнее в следующей главе). Теперь оставалось уточнить, какие из получаемых компонентов возникли в результате первого этапа фотосинтеза.

Кэлвину удалось ответить на этот вопрос, так как в молекуле углекислоты, с которой соприкасались растительные клетки, содержался изотоп углерода (углерод-14). Любое вещество, которое образуется из этой углекислоты в процессе фотосинтеза, само по себе становится радиоактивным, и его можно без труда определить. Этот вывод послужил отправной точкой для целого ряда исследований, проведенных в 50-х годах и позволивших разработать схему основных стадий фотосинтеза.

Глава XIII

Молекулярная биология: белок

Ферменты и коферменты

Процесс обмена веществ, который стал особенно хорошо известен ученым в середине 50-х годов, можно считать своеобразным выражением ферментативной природы клетки. Любая метаболическая реакция катализируется благодаря специфическому ферменту; характер обмена веществ определяется природой и концентрацией присутствующих в клетке ферментов. Следовательно, чтобы понять обмен веществ, необходимо знать ферменты.

Харден, открывший в начале нынешнего столетия промежуточный обмен веществ, обратил также внимание на еще одну сторону ферментативной деятельности. Он поместил в воду дрожжевой экстракт в небольшом мешке из диализирующей мембраны (через которую просачиваются только молекулы малых размеров). После того как через стенки мешка вышли мелкие молекулы экстракта, последний уже не мог расщеплять сахар. Объяснить это явление просачиванием через мембрану самого фермента нельзя, поскольку вода, в которой находился мешок, также не расщепляла сахара. Однако в соединении с экстрактом внутри мешка она приобретала эту способность. Следовательно, можно сделать вывод: помимо крупных молекул, фермент включает в себя и относительно мелкие, непрочно связанные и потому способные просачиваться через мембрану. Эти мелкие молекулы, являющиеся структурной частью фермента и очень важные для его функционирования, получили название коферментов.

В середине 20-х годов шведский химик Ганс Карл Август Симон Эйлер (род. в 1873 г.) обнаружил, что и другие ферменты содержат коферменты, однако структуру последних удалось выяснить лишь десятилетием позже. Тогда же определили строение витаминов, после чего уже не вызывало сомнения, что в большинстве коферментов в качестве составной части молекулы имеются витаминоподобные структуры.

Итак, витамины, по-видимому, являются той частью коферментов, которые не вырабатываются самим организмом и поэтому должны быть включены в пищу. Без витаминов построение коферментов невозможно, а без коферментов некоторые ферменты оказываются недеятельными и, таким образом, обмен веществ нарушается. В результате наступает авитаминоз, иногда со смертельным исходом.

Поскольку ферменты и коферменты — это катализаторы, нужные организму в малых количествах, витамины тоже нужны в столь же небольших количествах. Этим, собственно, и объясняется тот факт, что ничтожнейшие составные части пищи могут оказаться крайне необходимыми для нормальной жизнедеятельности организма. Следовые количества таких элементов, как медь, кобальт, молибден, цинк, образуют существенную часть ферментной структуры. Были выделены ферменты, содержащие по одному или несколько атомов этих элементов.

Что же следует сказать о самих ферментах? На протяжении прошлого столетия ферменты считались таинственными веществами, выявляемыми лишь по их действию. Немецкому химику Леонору Михаэлису (1875–1949) удалось раскрыть тайну ферментов с помощью законов и методов химической кинетики (раздела физической химии, изучающего скорость реакций). В 1913 г. он установил зависимость скорости реакций, катализируемых ферментами, от определенных условий. Он предположил, что фермент образует промежуточное соединение с веществом, реакцию которого он катализирует. Подобное допущение свидетельствует о том, что ферменты есть не что иное, как молекулы, подчиняющиеся физико-химическим законам. Но что же это за молекулы? По всей вероятности, это белки, так как ферментный раствор легко теряет активность даже при слабом нагревании, а, как известно, такую термолабильность имеют лишь белковые молекулы.

Однако все это были лишь предположения. В 20-х годах немецкий химик Рихард Вильштеттер (1872–1942) выдвинул гипотезу, согласно которой ферменты вовсе не являются белками. Правда, как оказалось впоследствии, эта гипотеза была ошибочной, но научный авторитет ее автора долгое время не позволял в ней усомниться. Через несколько лет вопрос о белковой природе ферментов был поднят вновь, на сей раз американским биохимиком Джеймсом Бэчелором Самнером (1887–1955). В 1926 г. Самнер выделил из семян мечевидной канавалии фермент, катализирующий реакцию расщепления мочевины на аммиак и углекислый газ. В процессе получения фермента ученый обнаружил возникновение в определенный момент мельчайших кристаллов. Выделив и растворив эти кристаллы, он получил жидкость с повышенной активностью уреазы. Все попытки отделить эту активность от кристаллов не увенчались успехом. Полученные кристаллы оказались ферментами и, как показали опыты Самнера, одновременно и белками. Таким образом, уреаза была не только первым ферментом, полученным в кристаллическом виде, но и первым ферментом с доказанной белковой природой. Сомнениям относительно того, распространяется ли эта закономерность на все ферменты, положили конец исследования американского биохимика Джона Говарда Нортропа (род. в 1891 г.). В 1930 г. ученому удалось кристаллизовать пепсин — расщепляющий белок фермент желудочного сока; двумя годами позже — трипсин и в 1935 — химотрипсин. Трипсин и химотрипсин — расщепляющие белок ферменты поджелудочной железы. Они также оказались белками. После этого ученые получили в кристаллическом виде еще десятки ферментов, и все они были белками. К середине 30-х годов проблему ферментов уже нельзя было отделить от проблемы белков.



Поделиться книгой:

На главную
Назад