На основе этих фактов Лавуазье предположил, что дыхание представляет собой форму горения. Кроме того, в опытах Лавуазье свеча и мышь, потребляя определенное количество кислорода, выделяли соответствующее количество тепла. Техника измерений в этих опытах позволяла получить лишь приближенные результаты, но все же они подтверждали взгляды Лавуазье.
Это сильно укрепляло материалистическую концепцию жизни, так как показывало, что в живом и в неживом протекает один и тот же химический процесс, следовательно, управляют ими одни и те же законы.
С развитием физики в первой половине XIX в. точка зрения Лавуазье получает мощную поддержку. В эти десятилетия в связи с изобретением паровой машины внимание ученых привлекает теплота, которая оказалась способной производить работу, и другие явления, такие, как падение тел, движение воды и воздуха, свет, электричество, магнетизм и т. д.
В 1807 г. английский физик и врач Томас Юнг (1773–1829) предложил для обозначения явления, в результате которого происходит работа, термин «энергия» (в переводе с греческого — внутренняя работа). Физики начала XIX в. изучали процесс перехода одной формы энергии в другую и производили измерения этих изменений со все большей точностью. К 40-м годам XIX в. по крайней мере трое ученых — англичанин Джемс Прескотт Джоуль (1818–1889) и немцы Юлиус Роберт Майер (1814–1878) и Герман Людвиг Фердинанд Гельмгольц (1821–1894) — открыли закон сохранения и превращения энергии, согласно которому один вид энергии может переходить в другой, но общее ее количество при этом не уменьшается и не увеличивается.
Казалось естественным применить этот закон, основанный на множестве скрупулезных измерений, и к процессам в живой природе. Тот факт, что животное не может существовать, не получая постоянно энергию из пищи, сам по себе показывает, что жизненные процессы не создают энергии из ничего. Растения не потребляют пищу и не дышат так, как животные, но, с другой стороны, они не могут существовать без периодически получаемой световой энергии.
Майер утверждал, что источником различных форм энергии на Земле являются световое излучение и тепло, идущие от Солнца. Это и есть источник энергии для растений, а через них и для животных (включая, конечно, и человека).
Применимость закона сохранения энергии как к неживой, так и к живой природе была полностью подтверждена только во второй половине XIX в.
Органические соединения
Однако виталисты еще не сдали своих позиций. Хотя им и пришлось признать, что закон сохранения энергии справедлив для живой природы и что, например, костер и животные потребляют кислород и образуют углекислый газ сходным образом, это рассматривалось лишь как обобщение, — ведь говорим же мы, что и человек и горная вершина материальны. Огромное количество неизученных частностей оставляло лазейку для виталистических толкований. А может, живые организмы включают в себя формы материи, совершенно непохожие на те, из которых состоит мертвая природа? Казалось бы, на этот вопрос следует отвечать утвердительно. Вещества земных пород, моря и воздуха представлялись стойкими и неизменными. Вода при нагревании кипела и превращалась в пар, но при охлаждении снова превращалась в жидкость. Железо или соль, плавясь, могли вновь затвердевать до первоначального состояния. С другой стороны, вещества, полученные из живых организмов, — сахар, бумага, оливковое масло — сохраняли нежность и хрупкость живых форм. При нагревании они дымились, обугливались или воспламенялись, и изменения, происходившие с ними, были необратимыми; из дыма и золы после охлаждения никак нельзя было вновь получить бумагу. Появилась полная уверенность, что это две разновидности материи. Шведский химик Иенс Якоб Берцелиус (1779–1848) предложил называть вещества, выделенные из живых (или живших когда-либо) организмов, органическими, а все остальные — неорганическими (1807). В то время как органические вещества легко превращались в неорганические, обратный процесс был невозможен без участия живых агентов. По мнению Берцелиуса, только живой организм благодаря присутствию в нем некой «жизненной силы» способен синтезировать органические вещества из неорганических (теория «жизненной силы»).
Однако и эта точка зрения продержалась недолго. Немецкий химик Фридрих Вёлер (1800–1882), изучая цианиды и близкие к ним соединения, считавшиеся в то время неорганическими, получил кристаллическое вещество, по составу и свойствам абсолютно тождественное кристаллам мочевины. Мочевина — главная составная часть мочи млекопитающих — определенно органическое соединение. Таким образом, Вёлер впервые (1824) синтезировал из неорганических веществ органическое соединение.
Открытие Вёлера положило начало синтезу органических веществ и нанесло удар теории «жизненной силы». С появлением работ французского химика Пьера Эжена Марселена Бертло (1827–1907) не оставалось сомнений, что стена между органическим и неорганическим мирами рухнула. В 50-х годах XIX в. Бертло синтезировал из явно неорганических веществ ряд хорошо известных органических соединений, таких, как метиловый и этиловый спирты, метан, бензол и ацетилен.
С развитием аналитической химии уже в первые десятилетия XIX в. стало известно, что органические соединения состоят главным образом из углерода, водорода, кислорода и азота. Химики научились соединять все эти элементы таким образом, что полученное соединение обладало общими свойствами органических веществ, но не встречалось непосредственно в живых организмах.
Во второй половине XIX в. был осуществлен синтез многих органических соединений, и с этого времени стало невозможным определять органическую химию как науку о веществах, образованных только живыми организмами. Правда, все еще удобно было разделять ее на две части, органическую и неорганическую, но уже определяя их как химию углеродных соединений и химию соединений, не содержащих углерода. Жизнь тут была ни при чем.
И все же оставалась область, куда виталисты еще могли отступить. Синтезированные органические соединения были относительно просты. В живых же существах большинство веществ настолько сложно, что химики XIX в. даже надеяться не могли их повторить.
В 1827 г. английский врач Уильям Праут (1785–1850) впервые разделил эти сложные соединения на три группы. Теперь мы называем эти группы веществ углеводами, жирами и белками. Углеводы (сахара, крахмал, целлюлоза и т. д.), так же как и жиры, состоят только из углерода, водорода и кислорода. Углеводы относительно богаты кислородом, тогда как жиры бедны им. Кроме того, многие углеводы в отличие от жиров растворяются в воде.
Наиболее сложными, хрупкими и наиболее специфичными для жизни оказались белки. Помимо углерода, водорода и кислорода, они содержат азот и серу; растворимые в холодной воде, они свертываются и становятся нерастворимыми даже при слабом нагревании.
Сначала белки называли альбуминами, так как наиболее известным белковым веществом был яичный белок альбумин. В 1838 г. голландский химик Жерар Иохан Мулдер (1802–1880) назвал их протеинами — «первостепенно важными». И именно на белковую молекулу виталисты возлагали особые надежды.
Однако успехи органической химии способствовали развитию идеи эволюции.
Было установлено, что все живые существа состоят из одних и тех же классов органических веществ — углеводов, жиров и белков, и, хотя они отличны у разных видов, эти различия носят второстепенный характер. Так, кокосовая пальма и корова чрезвычайно несхожи, но жиры кокосовых орехов и молока почти неразличимы.
Далее, химикам середины XIX в. стало ясно, что сложные по структуре углеводы, жиры и белки распадаются в процессе переваривания пищи до относительно простых «строительных кирпичиков». Эти «кирпичики» одинаковы для всех видов и только по-разному соединяются между собой. Один организм может использовать пищу, резко отличную от пищи другого организма (например, человек ест омаров, а корова — траву), но в обоих случаях пища распадается на одинаковые «строительные кирпичики», которые поглощаются организмом, а затем он складывает из них свои собственные сложные вещества.
А коль скоро жизнь с точки зрения химии едина во всем многообразии ее внешних проявлений, то и эволюционные превращения одного вида в другой, в сущности, касаются деталей и не требуют основательной перестройки. Это положение уже само по себе говорило в пользу эволюционной теории.
Ткани и эмбрионы
Благодаря успехам микроскопии биологи могли бы и не пользоваться достижениями смежных наук, чтобы обосновать единство органического мира.
Микроскоп в избытке давал пищу человеческому воображению. Первые исследователи, очарованные возможностью заглянуть в мир бесконечно малого, утверждали, что они видят такие детали, которые в действительности лежали за пределами разрешающей способности микроскопа или просто были плодом богатой фантазии. Так, они скрупулезно изображали микроскопических человечков (гомункулов), которых якобы видели в сперматозоидах.
По их представлениям, мельчайшим структурам не было конца: если в яйце или сперме заложена крошечная фигурка, то она может содержать в себе еще более мелкую, которая когда-нибудь будет ее потомком, и так до бесконечности. Были даже попытки вычислить, сколько гомункулов содержалось в прародительнице Еве; строились предположения, что человечество вымрет, когда иссякнет запас этих поколений, гнездящихся одно в другом. Учение преформистов, отрицавшее развитие вообще и рассматривавшее процесс образования организма как простое увеличение заложенного в половых клетках родоначальной особи невидимого, прозрачного зачатка, было явно антиэволюционным. Не было никаких оснований даже предполагать изменения вида на протяжении всей цепи поколений.
Первую решительную атаку против этой теории предпринял русский академик физиолог Каспар Фридрих Вольф (1733–1794). В своей докторской диссертации (1759) Вольф детально описал развитие цветка и листа у растения. Он отметил, что кончик растущего побега, так называемая «точка роста», состоит из недифференцированных и очень обобщенных структур. Однако по мере роста ткани этого кончика специализируются так, что одна их часть в конце концов превращается в цветок, а другая в лист. Позднее ученый распространил свои выводы и на животных. Он показал, что недифференцированные ткани куриных эмбрионов, постепенно специализируясь, дают начало различным органам брюшной полости. Развитое Вольфом учение представляло собой эпигенез (термин, предложенный в 1651 г. Уильямом Гарвеем), согласно которому все существа, как бы они ни различались по внешнему виду, развиваются из простых «пузырьков» живой материи и одинаковы по своему происхождению.
Доказательства эпигенеза представил французский зоолог Этьен Жоффруа Сент-Илер (1772–1844). Создавая ненормальные условия для развивающихся куриных эмбрионов, он получал цыплят-уродов. Эти опыты положили начало
Даже вполне развившиеся организмы не столь различны, как это может показаться с первого взгляда. Французский врач Мари Франсуа Ксавье Биша (1771–1802) в последние годы своей короткой жизни даже без помощи микроскопа обнаружил, что различные органы состоят из многих неодинаковых по виду компонентов. Он назвал эти компоненты тканями и таким образом положил начало
Допущение, что клетки являются элементарными единицами жизни, было бы особенно убедительным, если бы удалось показать способность клетки к независимой жизни вне окружения биллионов и триллионов других клеток. Это сделал немецкий зоолог Карл Теодор Эрнст Зибольд (1804–1885). В 1845 г. он выпустил книгу по сравнительной анатомии, в которой довольно четко доказал, что простейшие — маленькие животные, впервые обнаруженные Левенгуком, — это организмы, состоящие из одной клетки. Каждый такой организм окружен оболочкой и несет в себе все основные жизненные функции. Он заглатывает пищу, переваривает ее, ассимилирует и затем выбрасывает остатки. Простейшее ощущает действие среды и соответственно реагирует. Оно растет и, делясь пополам, размножается. Конечно, простейшее подчас крупнее и более сложно, чем клетка такого многоклеточного организма, как человек. Но клетка простейшего и должна быть иной, так как она обладает необходимыми для самостоятельной жизни свойствами, в то время как отдельные клетки многоклеточного организма могут и не иметь многих из этих свойств. Стало возможным показать значение отдельных клеток даже на многоклеточных организмах. Русский биолог Карл Максимович Бэр (1792–1876) в 1826 г. открыл яйцо млекопитающих, исправив неверное представление, что яйцом является весь граафов пузырек яичника, и проследил, каким образом оно превращается в самостоятельно живущий организм. В следующем десятилетии он выпустил большой двухтомный труд по этому вопросу, положив тем самым начало
Установлено, что для всех позвоночных типично образование трех зародышевых листков. Немецкий врач Роберт Ремак (1815–1865) дал им названия, которые сохранились и доныне: эктодерма (наружный), мезодерма (средний) и эндодерма (внутренний).
Швейцарский физиолог Рудольф Альберт Келликер (1817–1905) в 40-х годах XIX в. доказал, что и яйцо и сперматозоид также представляют собой клетки. (Позднее немецкий зоолог Карл Гегенбаур (1826–1903) показал, что даже большое птичье яйцо — это одна клетка.) При слиянии сперматозоида и яйца образуется оплодотворенное яйцо, которое также пока остается одноклеточным. Слияние, или оплодотворение, является началом развития эмбриона. Хотя биологи к середине XIX в. уже представляли, как происходит этот процесс, детально он был описан только в 1879 г. швейцарским зоологом Германом Фолом, который наблюдал оплодотворение яйца морской звезды. К 1861 г. Келликер опубликовал руководство по эмбриологии позвоночных, где дал оценку работам Бэра с точки зрения клеточной теории. Каждый многоклеточный организм развивается из единственной клетки — оплодотворенного яйца. Оплодотворенное яйцо делится. Получившиеся в результате этого деления клетки еще не дифференцированы, однако постепенно они специализируются в различных направлениях, пока не образуются сложные взаимосвязанные структуры взрослых форм. В этом и состоит эпигенез, выраженный в терминах клеточной теории.
Мысль о единстве жизни заметно укрепилась. Оказалось, что оплодотворенные яйцеклетки человека, жирафа и макрели незначительно отличаются друг от друга. Только по мере развития зародыша постепенно начинают проявляться различия. Мельчайшие, еле уловимые структуры эмбриона превращаются в одном случае в крылья, в другом — в руки, в третьем — в лапы, в четвертом — в плавники. Бэр сознавал, что родственные отношения животных легче установить при сопоставлении эмбрионов, нежели при сравнении взрослых организмов, поэтому его следует считать основателем
Видовые отличия, оцениваемые с точки зрения клеточной теории, казались незначительными и вполне воспроизводимыми в процессе эволюционного развития.
Бэр смог показать, что у зародышей позвоночных спинная струна, или хорда, — плотный стержень, тянущийся вдоль спины, — присутствует временно, и лишь примитивные рыбоподобные существа сохраняют ее на протяжении всей жизни. Эти примитивные животные были впервые изучены и описаны в 60-х годах XIX в. русским зоологом Александром Онуфриевичем Ковалевским (1840–1901). У позвоночных хорда быстро замещается состоящим из позвонков позвоночным столбом. Тем не менее и позвоночные и эта немногочисленная группа беспозвоночных объединены в один тип хордовых. Хорда, существующая столь короткое время в процессе эмбрионального развития всех позвоночных (даже человека), свидетельствует о единстве происхождения всех позвоночных от каких-то примитивных, имевших хорду предков.
Из уст представителей всех направлений биологии — сравнительной анатомии, палеонтологии, биохимии, гистологии, цитологии и эмбриологии — раздавались сперва робкие, а к середине XIX в. все более настойчивые голоса о неизбежности признания эволюционной концепции. Оставалось лишь понять, каким образом осуществлялась эволюция.
Глава VI
Эволюция
Естественный отбор
Английский естествоиспытатель Чарлз Дарвин (1809–1882) первым понял механизм эволюции и утвердил его в умах биологов.
В юности Дарвин пытался изучать медицину, а позднее — богословие, но с детства его увлекала естественная история и в годы студенчества захватила настолько серьезно, что биология стала его специальностью. В 1831 г. Дарвину предложили занять место натуралиста на корабле английского флота «Бигль», который готовился к кругосветной научной экспедиции. За время пятилетнего плавания Дарвин проявил себя как талантливый натуралист; и именно благодаря его участию эта экспедиция стала самой важной исследовательской экспедицией в истории биологии.
Перед путешествием Дарвин прочел первый том «Основ геологии» Лайеля и поэтому уже имел четкое представление о древности Земли и длительности развития жизни на ней. Продвигаясь с экспедицией вдоль берегов Южной Америки, он не мог не обратить внимания на то, как постепенно, лишь незначительно отличаясь друг от друга, сменяются виды животных и растений.
Наиболее удивительными были наблюдения, которые Дарвин сделал во время недельной стоянки на Галапагосских островах, за тысячу километров от побережья Эквадора. Здесь Дарвин изучил группу птиц, известную теперь под названием Дарвиновы вьюрки. Эти во многих отношениях очень близкие птицы делятся по меньшей мере на 14 видов, ни один из которых не встречается на ближайшем материке или где-либо еще в мире. Дарвин предположил, что какой-то материковый вид вьюрка очень давно заселил острова и что постепенно на протяжении веков происходило превращение этого исходного вида в различные ныне живущие. У одних птиц развилась способность употреблять в пищу один сорт семян, у вторых — другой, третьи стали насекомоядными. В зависимости от образа жизни у каждого вида сформировался специфический клюв, свои размеры и особое строение тела. Таким образом, родительский вид вьюрков нашел на Галапагосе сравнительно малонаселенную страну и достаточно подходящие условия для образования многих разновидностей, в то время как на материке этого не произошло.
Но один момент, и притом основной, оставался необъясненным. Что вызывает такие эволюционные изменения? Что заставляет зерноядный вид вьюрка превращаться в насекомоядный? Дарвин не принял гипотезы Ламарка, согласно которой следовало бы предположить, что вьюрки, случайно попробовав питаться насекомыми, приобретали вкус к этой пище и передавали потомкам повышенную способность к ее усвоению и тенденцию к соответствующему изменению упражняемых органов (клюва, например). Ученый понял, что в естественных условиях в основе изменчивости растений и животных лежит тот самый отбор, который практиковался человеком при выведении культурных сортов растений и пород домашних животных еще с эпохи неолита. Он заключил, что наиболее приспособленные растения и животные оставляют более многочисленное потомство, чем менее приспособленные. Однако законов действия естественного отбора он еще не знал.
Через два года после возвращения в Англию Дарвин познакомился с книгой «Опыт о законе народонаселения, или изложение прошедшего и настоящего действия этого закона на благоденствие человеческого рода, с приложением нескольких исследований о надежде на устранение или смягчение причиняемого им зла», написанной сорока годами ранее английским экономистом Томасом Робертом Мальтусом (1766–1834). Утверждая, что прирост населения в человеческом обществе всегда выше, чем рост производства средств существования, Мальтус оправдывал голод, эпидемии и войны как факторы, сокращающие численность населения.
Дарвин использовал идею Мальтуса о регуляции численности населения недостаточностью пищи и пришел к выводу, что в природе в первую очередь гибнут особи, не обладающие преимуществами в борьбе за существование. Так, первые вьюрки беспрепятственно размножались на Галапагосе, пока не истощились запасы семян, служивших им пищей. Часть вьюрков стала голодать, в первую очередь те, кто был послабее и менее приспособлен к поискам семян. А что если некоторые из птиц стали питаться более крупными или крепкими семенами и даже иногда проглатывать насекомых? Голодание должно было понизить размножение тех, у кого не проявились такие способности. В то же время стали быстро размножаться вьюрки, нашедшие какие-то новые, пусть не очень привычные для них, но нетронутые запасы пищи.
Иными словами, влияние среды благоприятствует возникновению различий и расхождению признаков, пока не образуются самостоятельные виды, которые отличаются и друг от друга и от общего предка. Сама природа, так сказать, производит отбор более выносливых особей, и путем такого «естественного отбора» жизнь разветвляется на бесконечное множество форм.
Дарвин пытался уяснить, каким образом возникают необходимые изменения. Занимаясь выведением новых пород домашних животных, он мог заметить, что в любой группе животных наблюдаются случайные отличия особей: в размерах, окраске, поведении. Использовав преимущества такой изменчивости, сознательно содействуя размножению одних вариантов и уничтожая другие, человек на протяжении ряда поколений смог создать различные породы крупного рогатого скота, лошадей, овец и кур, а дав волю фантазии, получил собак и золотых рыбок самых причудливых форм. Не может ли природа, подобно человеку, производить отбор, конечно гораздо медленнее, на протяжении более длительного периода, но зато приспособив животных к условиям их существования, а не к человеческому вкусу и потребностям?
Дарвин обратил внимание на половой отбор: самки животных предпочитают наиболее ярко окрашенных самцов. Вероятно, таким путем и появился нелепый красавец павлин. Заинтересовался Дарвин и рудиментарными органами, которые в прошлом могли быть далеко не бесполезными. Так, обнаруженные у китов и змей остатки костей когда-то служили частями тазового пояса и задних конечностей. Это заставляло предположить, что киты и змеи — потомки существ, передвигавшихся с помощью ног.
Дарвин был исключительно добросовестным исследователем, он подолгу, с большой тщательностью собирал и классифицировал факты. Только в 1844 г. он взялся за перо, однако еще в течение десяти лет ему не удавалось четко сформулировать свою теорию.
Тем временем другой английский естествоиспытатель, Альфред Рассел Уоллес (1823–1913), также занялся этой проблемой. Подобно Дарвину, он потратил значительную часть жизни на путешествия. В 1848–1852 годах он побывал в Южной Америке, а в 1854 г. — на Малайском архипелаге. Его внимание привлекли различия между млекопитающими Азии и Австралии. Позднее, изучая географическое распределение видов, Уоллес показал, что по Малайскому архипелагу — по глубоководному проливу между островами Борнео и Целебес, а также Бали и Ломбок — проходит граница (и до сих пор известная под названием Уоллесовской линии), разделяющая его фауну и флору на азиатскую и австралийскую части. Отсюда возникло деление животных на большие континентальные и суперконтинентальные группы.
Млекопитающие Австралии казались Уоллесу гораздо более примитивными и менее жизнеспособными, чем млекопитающие Азии, и он полагал, что в любом соревновании именно их ожидает гибель. Причина, по которой австралийские млекопитающие все-таки выжили, видимо, состояла в том, что Австралия и прилежащие острова отделились от азиатского материка еще до образования более совершенных азиатских видов. Уоллес пришел к выводу, что эволюция совершается путем естественного отбора, и послал Дарвину на отзыв статью с изложением основ теории отбора (не зная, что тот работает над этой же проблемой). Дарвина поразило такое совпадение взглядов. По настоянию Лайеля и других ученых работы Дарвина и Уоллеса были одновременно опубликованы в 1858 г. в научном журнале Линнеевского общества в Лондоне.
В следующем году Дарвин наконец опубликовал свою книгу «Происхождение видов путем естественного отбора, или сохранение благоприятствуемых пород в борьбе за жизнь», обычно называемую просто «Происхождение видов».
Ученый мир ждал появления этой книги. Первые отпечатанные 1250 экземпляров были раскуплены в один день. Книга расходилась издание за изданием, и до сих пор, сто лет спустя, спрос на нее не иссяк.
Борьба вокруг эволюционной теории
Нет сомнения в том, что «Происхождение видов» занимает важнейшее место в истории биологии. Многие области науки получили новое осмысление благодаря эволюционной идее естественного отбора. Эта теория дала рациональное объяснение данным, накопленным систематикой, эмбриологией, сравнительной анатомией и палеонтологией. Биология приобрела наконец теоретическую основу.
Однако многим трудно было безоговорочно принять дарвиновскую теорию, которая опрокидывала весьма почитаемые человеком представления, в частности отвергала идею божественного сотворения мира и человеческого рода. Даже нерелигиозных людей отталкивала мысль, что прекрасное царство жизни и сам человек обязаны своим существованием слепому и бесчувственному случаю.
В Англии на стороне оппозиции выступил ученик Кювье зоолог Ричард Оуэн (1804–1892). Как и его учитель, он был большим специалистом по реконструкции вымерших животных на основе ископаемых остатков. Оуэн возражал не против самой идеи эволюции, а против случайности в ее осуществлении. Он понимал эволюцию как проявление некоторого внутреннего побуждения.
Сам Дарвин активно не боролся за собственную теорию, так как был слишком мягок (и к тому же болен), чтобы участвовать в спорах. В его защиту выступил английский естествоиспытатель Томас Генри Гексли (1825–1895). Блестящий популяризатор, он, как никто другой, сделал идею эволюции доступной и понятной каждому.
Во Франции, где над биологами десятилетиями довлел авторитет Кювье, дарвинизм поначалу не пользовался успехом. Однако в Германии он нашел более благоприятную почву. Немецкий естествоиспытатель Эрнст Генрих Геккель (1834–1919) был не только последователем Дарвина, но в некоторых отношениях пошел дальше него. Он рассматривал развитие зародыша как краткое повторение эволюции вида. Так, развитие млекопитающего, подобно развитию организма простейшего, начинается со стадии одной-единственной клетки. Клетка развивается в существо, состоящее из двух зародышевых листков и напоминающее медузу; затем появляется третий листок, и оно становится похожим на примитивного червя. Впоследствии у зародыша млекопитающего развивается, а потом исчезает хорда, присущая примитивным хордовым; далее возникают и исчезают структуры, напоминающие зачатки рыбьих жабр.
Против Геккеля активно выступил старейший эмбриолог Карл Бэр, сам вплотную подошедший к этим же идеям, но так и не принявший теории Дарвина. Правда, Геккель в своих утверждениях доходил до крайностей; биологи наших дней уже не рассматривают эмбриональное развитие как буквальную и достоверную картину эволюции вида.
В США приверженцем учения Дарвина был американский ботаник и в то же время видный религиозный деятель Аса Грей (1810–1888). Его противником был швейцарский естествоиспытатель Жан Луи Рудольф Агассис (1807–1873), который получил известность благодаря всестороннему изучению ископаемых рыб. Он проводил многолетние исследования ледниковых отложений и обосновал существование в истории Земли ледниковой эпохи. Ему удалось показать на примере альпийских массивов родной Швейцарии, что ледники медленно передвигаются, захватывая с собой валуны и щебень и выравнивая скалы, по которым они движутся. Агассис обнаружил следы перемещения ледников на скалах в тех районах, где на памяти человека ледников не было. В 1846 г. Агассис прибыл в США для чтения лекций, но интерес к природе Северной Америки заставил его остаться там.
И в Америке Агассис повсюду находил признаки древнего оледенения. Он пришел к выводу, что много тысяч лет назад обширные области земной поверхности лежали под ледяным покровом.
Ледниковый период (теперь известны четыре ледниковых периода на протяжении последнего полумиллиона лет) свидетельствовал против крайнего униформизма Хэттона и Лайеля. В объяснении причин древнего оледенения Агассис выступал как приверженец теории катастроф Кювье. До конца жизни он не принял теории Дарвина и оставался поборником идеи божественного сотворения мира.
Происхождение человека
Естественно, самым уязвимым местом дарвиновской теории было ее приложение к человеку. Дарвин в «Происхождении видов» эту проблему обошел, а его соавтор по теории естественного отбора Уоллес решительно утверждал, что человек не подвержен эволюционным изменениям (в более поздние годы он занялся спиритизмом). Однако совершенно нелогично было предполагать, что эволюционируют все виды организмов, кроме человека. И действительно, постепенно накапливались факты, подтверждавшие, что человек также вовлечен в эволюционный процесс.
В 1838 г. французский археолог Жак Буше де Перт (1788–1868) обнаружил на севере Франции топорища. Слой земли, в котором они были найдены, позволил утверждать, что их возраст исчисляется многими тысячелетиями. Очевидно было, что топорища не являются предметами естественного происхождения, их мог сделать только человек. Это было первым свидетельством того, что возраст не только Земли, но и человека вопреки Библии значительно превышает шесть тысячелетий.
Опубликованная Буше де Пертом в 1846 г. книга о его находках произвела огромное впечатление на современников. Однако французские биологи под влиянием идей Кювье долго еще отказывались признать эти находки, хотя в 50-х годах археологи обнаружили и более древние орудия. В 1859 г. несколько английских ученых, посетив места находок Буше де Перта, объявили себя его сторонниками. А четырьмя годами позже геолог Лайель, использовав находки Буше де Перта, выпустил книгу «Геологические доказательства древности человека», в которой не только решительно отстаивал дарвиновские идеи, но и распространял их на человека. С книгой, поддерживающей эти взгляды, выступил и Гексли.
Вскоре увидела свет вторая большая работа Дарвина — «Происхождение человека и половой отбор» (1871), где открыто провозглашался факт эволюции человека. Рудиментарные органы человека рассматривались в ней как свидетельство эволюционных изменений: аппендикс — как остаток органа, в котором пища могла накапливаться и подвергаться переработке под действием бактерий; четыре нижних позвонка когда-то были частью хвоста; нефункционирующие ушные мускулы были унаследованы от предков, которые двигали ушами, и т. д.
Но к этому времени ученые располагали не только косвенными доказательствами эволюции человека. Были найдены остатки самого древнего человека. Летом 1856 г. в Германии в долине Неандерталь возле Дюссельдорфа нашли явно человеческие кости и череп. Они были обнаружены в пластах, возраст которых насчитывал многие тысячелетия. Возникли споры, принадлежали ли эти костные остатки примитивному предку современного человека или дикарю с деформированным вследствие перенесенных заболеваний скелетом.
В частности, немецкий врач Рудольф Вирхов (1821–1902), ярый противник учения Дарвина, считал, что это скелет старика, перенесшего рахит в юности и подагру к концу жизни, а основатель французской антропологической школы Поль Брока (1824–1880) утверждал, что как у больного, так и у здорового современного человека не может быть такого черепа, как найденный, и что неандерталец представляет собой примитивную форму человека, весьма отличную от современной.
Для решения спора требовалось найти костные остатки промежуточных между человеком и человекообразными обезьянами форм. К тому времени уже были обнаружены промежуточные звенья среди ископаемых животных. Так, в 1861 г. Британский музей приобрел ископаемые остатки существа, которое, без сомнения, следовало отнести к птицам, так как на камне имелись отпечатки перьев, но у этого существа были хвост и зубы, похожие на зубы ящеров. Эта находка была воспринята как лучшее из всех возможных свидетельств того, что птицы произошли от рептилий.
Однако многолетние поиски такого промежуточного звена в эволюции человека были безрезультатными. Успех пришел к голландскому анатому и антропологу Эжену Дюбуа (1858–1940). Дюбуа полагал, что примитивное человекообразное существо может быть найдено в тех местах, где до сих пор много человекообразных обезьян: либо в Африке — обиталище шимпанзе и горилл, либо в Юго-Восточной Азии, где живут орангутанг и гиббон.
В 1887 г. Дюбуа отправился на Суматру, где в течение трех лет вел бесплодные раскопки, а потом перебрался на Яву. Именно на Яве Дюбуа удалось найти черепную крышку, бедренную кость и два зуба, несомненно принадлежавшие примитивному человеку. Черепная крышка была гораздо крупнее, чем у любой современной обезьяны, но значительно меньше, чем у любого из ныне живущих людей. Существо, которому принадлежали эти остатки, назвали питекантропом
И снова споры среди ученых. Но аналогичные открытия сделали в Китае, Африке. В наше время известно уже несколько «промежуточных звеньев» и нет никаких оснований сомневаться в факте эволюции человека и эволюции вообще, хотя и в XX в. выдвигалось множество антиэволюционных концепций. Сегодня трудно представить себе истинного ученого, придерживающегося антиэволюционных воззрений.
Боковые ветви эволюционной теории
Ошибались не только те, кто отрицал теорию эволюции, но и те, чей энтузиазм распространял ее на области, где она неприложима. Так, английский философ Герберт Спенсер (1820–1903), который пришел к идее эволюции еще до опубликования книги Дарвина, пытался с ее помощью объяснить развитие человеческого общества и его культуры, став пионером
Развитие человеческого общества Спенсер рассматривал как переход от однородного, простого уровня до современного разнородного и сложного состояния. Оперируя терминами «эволюция», «выживание наиболее приспособленного», Спенсер пытался доказать, что непременным спутником эволюционного прогресса в обществе является соревнование человеческих индивидуумов, при котором слабые неизбежно терпят неудачу. Спенсер не учитывал огромной роли в развитии человеческого общества взаимопомощи, заботы о больных и престарелых.
Учение Спенсера сыграло свою отрицательную роль в истории. Накануне первой мировой войны в руках националистов и милитаристов оказалась теория, утверждавшая, что война — это «благо», так как она обеспечивает выживание наиболее приспособленных.
К счастью, теперь уже не существует романтических иллюзий относительно последствий грязных войн.
Английский антрополог Фрэнсис Гальтон (1822–1911), двоюродный брат Чарлза Дарвина, положил начало другому направлению. Заинтересовавшись вопросами наследственности, он первым отметил важность изучения однояйцовых близнецов, наследственные задатки которых следует считать одинаковыми, а различия — приобретенными под влиянием внешней среды.
Изучая частоту проявления высоких умственных способностей в отдельных семьях, Гальтон получил данные, доказывавшие их наследуемость. В связи с этим он предположил, что путем соответствующей селекции умственные способности и другие желательные качества человека можно усилить, а нежелательные — устранить. Науку о методах, с помощью которых можно наилучшим образом осуществить такой контроль, он назвал в 1883 г. евгеникой. Однако чем глубже познается механизм наследования, тем меньше биологи верят в возможности целенаправленного разведения для улучшения расы людей. Это очень сложная проблема. Хотя евгеника на вполне законных основаниях остается отраслью биологии, не следует забывать, что находятся и такие далекие от науки люди, которые используют ее язык для пропаганды расизма.
Глава VII
У истоков генетики
Слабое место в теории Дарвина
Процесс передачи потомству родительских наследственных факторов долгое время оставался совершенно непонятным. Открытие в конце XVII в. сперматозоида вызвало целую дискуссию. Одни утверждали, что будущий зародыш целиком заключен в яйцеклетке и оплодотворение является лишь толчком к развитию. Другие настаивали на том, что будущий зародыш помещается в сперматозоиде, а яйцеклетка лишь обеспечивает его питание. Спорщики сходились на том, что носителем наследственных факторов является одна родительская особь.
Только в середине XVIII в. в результате наблюдений над детьми от смешанных браков у человека и исследования экстерьера мулов было установлено, что признаки наследуются от обоих родителей. Пьер Луи Моро Мопертюи (1698–1759) выдвинул теорию, согласно которой наследственные признаки у потомков формируются и определяются «семенными частицами» обоих родителей.
Даже в XIX в. еще не было правильного представления о наследственном механизме. Именно поэтому эволюционная теория так часто применялась неудачно. Спенсер считал возможным быстрое изменение человеческого поведения: Гальтону казалось весьма несложным усовершенствовать человеческую расу с помощью подбора производителей при размножении. Подобные воззрения биологов объяснялись, по сути дела, недостатком знаний о природе наследственного механизма. Это было самое слабое звено в теории Дарвина. Дарвин предполагал, что среди молодых особей любого вида наблюдается непрерывная случайная изменчивость, причем определенные изменения делают животных более приспособленными к окружающей среде. Так, жирафу тем легче прокормиться, чем длиннее у него шея.
Но где гарантия, что этот признак повторится у потомства? Вряд ли жираф выискивал особо длинношеего супруга, гораздо вероятнее, что ему пришлось встретиться с короткошеим. При скрещивании крайних вариантов происходит смешение признаков, так что у потомства длинношеего и короткошеего жирафов шея будет средней длины, — к такому убеждению привел Дарвина весь его опыт по разведению животных.
Иными словами, в результате случайного спаривания все полезные и приспособительные признаки, которые проявляются при случайной изменчивости, усредняются. Раз естественному отбору нечего «отбирать», то и эволюционных изменений происходить не будет.
Попытки биологов объяснить это явление оказались безуспешными. Немецкий ботаник Карл Вильгельм Негели (1817–1891) прекрасно сознавал, как сложно найти четкое обоснование «усреднения» и его последствий. Он предположил, что эволюционные изменения направляются в определенную сторону каким-то внутренним толчком.
Так, судя по палеонтологическим данным, предками лошадей были животные величиной с собаку, имевшие по четыре копытца на каждой стопе. С течением времени эти животные становились крупнее и утрачивали одно копытце за другим, пока не превратились в современную крупную однокопытную лошадь. Негели предполагал, что побудительным фактором этого процесса было действие некой внутренней силы. Если бы она действовала и дальше, лошади могли бы стать слишком крупными и неуклюжими и, следовательно, беззащитными против врагов; им грозило бы постепенное вымирание.
Эта теория носит название теории ортогенеза. Современные биологи ее отвергают. Как мы увидим дальше, приверженность Негели к этой теории неожиданно принесла скверные плоды.
Горох Менделя
Проблема была решена благодаря трудам чешского натуралиста Грегора Иоганна Менделя (1822–1884). Мендель занимался и математикой и ботаникой. Начиная с 1856 г. он в течение девяти лет изучал наследственные признаки гороха, используя статистические приемы обработки результатов.
Ученому нужна была полная уверенность, что наследуются признаки только одного родителя, поэтому он очень тщательно проводил самоопыление различных растений, аккуратно собирал с каждого самоопыленного растения семена, отдельно высаживал их и изучал новое поколение.
В результате этих опытов Мендель обнаружил, что горошины от карликовых растений и в первом и в последующих поколениях дают только карликовые растения. Таким образом, карликовые растения чистосортны.