Шина памяти — 64 бит
Пропускная способность памяти — 14,4 Гбайт/с
Максимальная скорость выборки — 6,5 Гтекст/с
Максимальная скорость закраски — 3,24 Гпикс/с
Максимальная производительность — 155,5 Гфлопс
Интерфейс — PCI Express 2.0 x16
Порты — DVI-I Dual Link, HDMI, опционально — VGA
Пиковое энергопотребление — 29 Вт
Однослотовая конструкция
Поддержка DirectX 11, включая шейдеры версии 5.0, OpenGL 4.1, DirectCompute 11 и OpenCL 1.0
Рекомендуемая производителем розничная цена — 59 долларов
В первой части этой статьи мы рассказали о нескольких моделях видеокарт серии NVIDIA GeForce 500, имеющихся в продаже в российских магазинах.
Как выбрать надежный жесткий диск?
Какие параметры жёсткого диска учитываем мы при покупке? Объём, разумеется... и цену. В лучшем случае частоту вращения шпинделя и скорость чтения/записи. Есть не менее важный параметр, который очень сложно оценить, — надёжность устройства. Согласитесь, будет неприятно, если накопитель выйдет из строя и прихватит с собой нажитые непосильным трудом данные. Обычно надёжность связывают с маркой винчестеров — якобы у одного производителя продукты более отказоустойчивы, чем у другого. Это совершенно неправильный подход — исчерпывающей статистики по отказам винчестеров различных вендоров никто не собирал.
На самом деле у всех производителей есть удачные и неудачные модели (если начинать припоминать вендорам все подобные случаи, можно написать целый роман, а не одну маленькую статью). Выпуск устройств такой проблемной серии может привести к временному перекосу в статистике (скажем, у Seagate были винчестеры серии 7200.11). На этом основании ни в коем случае нельзя делать вывод о качестве устройств определённого вендора. Другое дело, если собрать данные с большого числа сервисных центров за много лет... но, повторяю, этим никто не занимался. Выбирая винчестер, нужно смотреть не столько на марку, сколько на саму модель — её конструктивные особенности, отзывы пользователей и т. д.
Для начала стоит рассказать о наиболее часто встречающихся поломках современных жестких дисков. Как их определить в домашних условиях и что делать, если с вашим диском возникли проблемы. Обычно у пользователя возникает два вопроса — как извлечь данные с поврежденного накопителя, и как восстановить работоспособность самого устройства.
"Плохие" секторы.
С этой проблемой пользователи сталкиваются очень часто. Со временем либо вследствие нарушения условий эксплуатации, некоторые сектора диска перестают читаться. Проявляться это может по-разному: здесь и снижение скорости чтения/записи, и порча данных (в том числе пропадание разделов). Главная опасность подобной неисправности — потеря информации. Метод профилактики только один: периодически проводить тестирование поверхности диска специальными утилитами (важно, чтобы программа делала не только тест чтения, но и тест записи для неиспользуемых секторов).
Причин возникновения неисправности множество — к примеру, заводские дефекты, физическое воздействие или скачки напряжения в бытовой электросети. Если гарантийный срок эксплуатации устройства ещё не закончился, его можно заменить в сервисном центре. В противном случае стоит протестировать диск специальной утилитой, которая пометит сектора как сбойные. Если при последующем тестировании новых bad-блоков появляться не будет, такой винчестер можно использовать для хранения не очень важной информации.
Стоит отметить, что появление плохих секторов не всегда связано с поверхностью дисков. Иногда оно обусловлено проблемами с микропрограммным обеспечением, но об этом мы поговорим позже. Использовать винчестер с «битыми» секторами для хранения важных данных нельзя — нужно сразу переписать информацию на другой накопитель, как только вы заметили появление неисправности. Если важные файлы извлечь не удаётся, не пытайтесь самостоятельно восстановить данные — после кустарных способов «лечения» их можно потерять навсегда.
"Логические" неисправности.
Сюда мы отнесём все высокоуровневые ошибки. Порчу файловых систем вирусами, случайное удаление разделов и т.д. При этом пользователь не может получить доступ к записанной информации, хотя накопитель полностью исправен. Если никаких важных данных на нём не было, проще всего разбить диск на разделы и отформатировать заново. Для восстановления информации с таких устройств существует множество утилит, однако важно помнить, что производить запись на диск с «логическими» повреждениями ни в коем случае нельзя. Здесь есть несколько подводных камней. Во-первых, программы типа ScanDisk в такой ситуации совершенно бесполезны — они предназначены для работы с логически исправными разделами. Во-вторых, на вашем диске может быть включён режим, когда прочитанный с ошибкой логический сектор переназначается на исправный; это может привести к невозможности восстановления данных.
Впрочем, подобный эффект — явление достаточно редкое. Чаще встречаются проблемы из-за включённых по умолчанию автоматических тестов SMART. При этом проверяется качество поверхности диска, и также может происходить переназначение секторов. Если винчестер с логическими повреждениями содержит важные данные, лучше сразу обратиться к профессионалам (причём под профессионалами мы понимаем специализированную компанию, а не «компьютерщика» с набором общедоступных утилит), они смогут считать информацию с диска так, чтобы запись на него не производилась.
Проблемы с микропрограммным обеспечением.
Современный винчестер — достаточно сложное устройство. Его электронная часть содержит собственное микропрограммное обеспечение, и с ним, как это ни странно, тоже бывают проблемы. Вспомним, например, знаменитую «Муху CC» (название связано с кодом ошибки «LED: 000000CC») многострадальной серии Seagate 7200.11 (эти винчестеры вышли на рынок с многочисленными конструктивными недоработками). Из-за разрушения микропрограммы винчестер начинал работать нестабильно: скорость записи/чтения падала, винчестер мог не определяться в BIOS и т.д.
Сбои встроенного ПО могут приводить к самым непредсказуемым результатам, но лечатся они одинаково — восстановлением служебной информации. Делается это полностью программным методом, при этом у сервисных специалистов есть два варианта: ремонт винчестера с полной потерей всех пользовательских данных, либо извлечение данных с неисправного накопителя.
Если нужно просто отремонтировать устройство — служебная информация переписывается заново, а потом запускается процедура полного заводского самотестирования для полной калибровки накопителя. Если необходимо извлечь данные — такой способ неприемлем, и приходится очень долго и кропотливо восстанавливать служебную информацию без стопроцентной гарантии результата. Если же заказчик хочет получить свои данные и отремонтировать устройство, то после восстановления можно перейти к ремонту.
Понятно, что решить проблему с микропрограммным обеспечением можно только в специализированной фирме. Кстати, появление плохих секторов на диске не обязательно обусловлено физическим состоянием поверхности магнитных пластин; оно может быть связано с микропрограммными сбоями. В таком случае специалисты сервисного центра могут починить устройство.
Неисправность электроники.
Выход из строя электроники жёсткого диска может быть связан с заводским браком, скачками напряжения в бытовой электросети и кучей других причин. Часто (хоть и не всегда) при этом диагностировать поломку можно визуально: на плате контроллера можно увидеть выгоревший элемент. Винчестер, как правило, не подаёт признаков жизни — он не определяется утилитами BIOS. Такое устройство подлежит ремонту (хотя ремонт не всегда экономически целесообразен), который могут произвести квалифицированные специалисты в сервисном центре. Данные в этом случае, как правило, не повреждаются, и их восстановления не требуется.
Клин шпинделя и клин подшипника двигателя.
Определить эту неисправность можно по сильному шуму (винчестер издаёт звуки, похожие на визг) или жужжанию. Повреждение чисто механическое, чаще всего проблема возникает после падения устройства; особенно подвержены этой «болезни» жёсткие диски увеличенной ёмкости (в них используется три и более магнитных пластин). Пластины увеличивают нагрузку на ось, и даже незначительное механическое воздействие способно привести к поломке. Вариантов там масса, и все их разбирать не имеет смысла — восстановить данные с подобных устройств можно только с использованием специализированного оборудования, да и то не всегда (сам накопитель ремонту не подлежит).
Проблема возникает с дисками всех производителей, однако можно выделить некоторые неудачные модели. Скажем, у Seagate была серия 7200.11, на которой клин шпинделя двигателя возникал достаточно часто (в дополнение к другим поломкам). Также склонностью к подобным проблемам отличаются многие модели Toshiba — закрывающая ось крышка у них тонкая и со временем может деформироваться. Смазка постепенно испаряется, и в один прекрасный момент жидкостный подшипник заклинивает.
Выход из строя блока магнитных головок.
Как и в предыдущем случае, пользователь может заподозрить неисправность на слух: при работе диска появляются посторонние щелчки и постукивания, а винчестер может не определяться подпрограммами BIOS. Магнитные пластины винчестеров очень точно отшлифованы, и если блок магнитных головок с ними соприкоснётся (обычно он «парит» в воздушном потоке, создаваемом вращением пластин), то разъединить их механика винчестера уже не сможет из-за сильного молекулярного притяжения. При этом происходят так называемые «запилы»: головки царапают поверхность дисков. BIOS диск определяет, но он, естественно, не работает.
Для возникновения неисправности необходимо сильное механическое воздействие на винчестер, однако в некоторых моделях Samsung головка может самопроизвольно чиркнуть по поверхности пластин. Часто возникают проблемы с магнитными головками у Western Digital — они очень не любят перегрева. Кроме того, из-за особенностей конструкции (ось с блоком магнитных головок фиксируется крышкой устройства) винчестеры WD плохо переносят механические воздействия.
Винчестеры с неисправностью блока магнитных головок ремонту не подлежат. Данные с них удаётся восстановить только в специализированных компаниях и далеко не всегда — если головки просто вышли из строя, то можно установить аналогичный блок с другого винчестера. Но если поверхность магнитных пластин повреждена, в лучшем случае информация будет восстановлена частично.
Покупатели часто спрашивают — какой жесткий диск надежней. Всегда найдётся специалист (без кавычек), который скажет вам, что винчестеры фирмы A можно покупать, тогда как продукты B сыплются, как листья осенью. Но можно найти и поклонника фирмы B, и фирмы C, и даже D — проблемы могут быть с винчестерами любого производителя. Да, у каждого вендора бывают неудачные модели и серии; покупая винчестер, стоит обратить внимание на отзывы пользователей — по неудачным сериям в интернете информации достаточно.
Однако не каждому отзыву можно доверять — если у кого-то сломался, допустим, Seagate — это не значит, что винчестеры данной фирмы плохие. На самом деле вопрос выбора марки здесь не стоит — важнее определиться с моделью. Для начала нужно прочитать описание устройства на сайте производителя, однако есть моменты, которых вы там не найдете. Не стоит покупать диск только что выпущенной на рынок серии — в новинках могут быть непроверенные решения и качество их бывает нестабильным. Чаще всего именно в свежих моделях встречаются проблемы с микропрограммным ПО (а иногда здесь бывает и технологический брак). Присмотритесь к дискам, которые продаются хотя-бы полгода — за это время информацию об их недостатках можно будет найти в сети, к тому же — производитель успеет доработать устройство, а цены снизятся.
Не стоит ожидать от обычного «пользовательского» винчестера такой же надёжности, как от «серверного». Выпуск накопителей корпоративного класса строже контролируется, они имеют большую наработку на отказ, стойки к перегреву и т. д. Единственный недостаток — более высокая цена.
Стоит также учесть такие требования, как нагрев и шум — существуют так называемые «зеленые» накопители с пониженным энергопотреблением. Они не шумят, выделяют меньше тепла, но отличаются меньшей скоростью вращения шпинделя (обычно 5400 оборотов в минуту) и, как следствие, более высокой надежностью но меньшей скоростью доступа к данным. Если вам важнее скорость — нужно присмотреться к устройствам на 7200 rpm с алгоритмами упреждающего чтения и мощным блоком магнитных головок. Однако следует учесть более высокий нагрев таких дисков и необходимость установить в компьютер соответствующую систему охлаждения (иначе, диск может выйти из строя по причине перегрева).
Емкость — очень важный для пользователя момент. Однако мы часто забываем, что надежность может быть напрямую связана с этим параметром. Существуют накопители с одной, двумя, тремя и более магнитными пластинами. Чем их больше, тем больше вероятность механической поломки вследствие клина шпинделя или подшипника жесткого диска. К сожалению, все высокоемкие диски, в которых установлено три (или более) пластины весьма капризны. Они очень не любят даже незначительных механических воздействий или, скажем, перегрева. Резервное копирование данных с них часто бывает невозможно в домашних условиях, так что использовать такие диски стоит для хранения мультимедийной информации. Для установки ОС лучше взять устройство с одной пластиной, а для важной рабочей информации (документов, баз данных и т. д.) — с двумя.
Особняком стоят накопители для ноутбуков и переносные винчестеры — здесь надежность является главным фактором. В дисках на 1,8' или 2,5' применяются специальные конструктивные решения, делающие их более стойкими к механическим воздействиям (информацию по каждой конкретной модели можно найти на сайте производителя). Их достаточно для обычного ноутбука или внешнего usb-кейса, однако существуют и специальные решения. Например, предназначенные для применения в автомобильных бортовых системах Hitachi Endurastar — стойкие к вибрации и рассчитанные на широкий диапазон температур и давления. К сожалению, стоят они в несколько раз дороже обычных. Кроме того, если вам нужен, например, переносной винчестер на 3,5' — ни в коем случае не стоит брать капризные устройства с тремя и более «блинами» (магнитными пластинами) — они, как я уже писал, плохо переносят даже незначительные механические воздействия.
Самое главное — ни в коем случае не покупайте HDD с рук или в небольших сомнительных фирмочках — вам может попасться устройство после ремонта или, скажем, серьезного механического воздействия (владелец может продать его, пока поломка еще не проявилась). Лучше всего брать винчестер у официальных диллеров, с нормальной фирменной гарантией (обычно 3 или 5 лет).
Вопрос о том, какой винчестер надежен не совсем корректен — полностью надежных дисков нет, и сломаться может любая техника. Все, что мы можем сделать — выбрать устройство в соответствии со своими потребностями и задачами, а также эксплуатировать его правильно. Ну и не забывать о резервном копировании важных данных — бэкап обойдётся существенно дешевле восстановления информации. Напоследок хочу сказать: если необходимость в восстановлении всё же возникла, обращайтесь в специализированные компании. Со многими случаями кустари справиться не смогут, а вот окончательно угробить важные данные — запросто.
Графические процессоры AMD Radeon HD 6000
Замену выпускавшейся с сентября 2009 серии графических процессоров R800 (кодовое название Evergreen), известных под маркой Radeon 5xxx, планировалось представить осенью 2010 года. При этом новые чипы должны были выпускаться уже не по 40-нм, а по более тонкой 32-нм технологии. Однако компания TSMC, на мощностях которой размещают заказы как AMD, так и NVIDIA, после не слишком удачного запуска приняла решение отказаться от дальнейшего внедрения этого техпроцесса и сосредоточиться на подготовке к 28-нм технологическим нормам. В результате инженерам AMD пришлось менять конструкцию уже готовых к производству чипов, и первыми на рынке появились не флагманские ускорители, а видеокарты среднего класса.
Новая микроархитектура получила кодовое название Northern Islands («северные острова»), причём вошедшие в серию Radeon HD 6000 графические процессоры по сути разделились на два разных семейства: одно из них фактически представляет собой микросхемы предыдущего поколения с минимальными конструктивными доработками (Juniper, Turks, Caicos, Barts), а второе — это серьёзно переработанные Cypress с вычислительными процессорами на основе архитектуры VLIW4 (Cayman и Antilles).
AMD Radeon HD 6000 стали первыми графическими процессорами компании, из логотипа и из названия которых полностью исчезло какое-либо упоминание об ATI, канадском разработчике видеокарт, купленном AMD в 2006 году. Карты предыдущей серии носили официальное название ATI Radeon HD 5000.
Поговорим об архитектурных отличиях семейства Radeon HD 6000 от ускорителей предыдущего поколения. Интересующихся конструктивными особенностями Radeon HD 5000 отсылаем к подробной статье о микроархитектуре R800.
Начнём с графических процессоров Barts, на основе которых выпускаются видеокарты AMD Radeon HD 68xx. Обратимся к блок-схеме этого чипа.
Нетрудно заметить, что в новой микросхеме уменьшилось общее число универсальных процессоров (унифицированных шейдеров): до 1120 по сравнению с 1600 в Cypress. В чипе 14 SIMD-ядер, каждое из которых состоит из 16 блоков суперскалярных потоковых процессоров по пять вычислительных ядер ALU (архитектура VLIW5). Число блоков текстурирования — 56, на каждый SIMD-блок приходится по четыре текстурных. Для связи с видеопамятью типа GDDR5 применяется 256-битная шина с четырьмя 64-разрядными двухканальными контроллерами.
Инженеры AMD не ограничились чисто количественными сокращениями SIMD-ядер, в Barts были внесены и качественные изменения. Главное из них — обновлённый аппаратный движок тесселяции 7-го поколения (по неким внутренним подсчётам AMD). Разработчики говорят об улучшенных механизмах управления потоками и буферизации и утверждают, что по геометрической производительности новый движок не уступает тесселятору чипов NVIDIA на архитектуре Fermi, ранее значительно опережавшему решения AMD. В качестве фактора тесселяции было выбрано значение в 16 пикселей: более «мелкие» полигоны способны лишь тормозить расчёты, не давая принципиального повышения качества изображения.
В Barts также доработаны алгоритмы анизотропной фильтрации и реализован новый механизм сглаживания Morphological Anti-Aliasing (MLAA). Фактически это программный фильтр пост-обработки для двухмерного изображения, рассчитывающий «полутоновые» переходы между пикселями и делающий картинку более естественной.
Из важнейших аппаратных изменений необходимо упомянуть также уницифированный модуль видеодекодера третьего поколения (UVD3), способный аппаратно декодировать не только традиционные форматы H.264 или MPEG-2, но и MPEG-4 (DivX/XviD) и Blu-ray, включая Blu-ray 3D. UVD3 реализован во всех чипах нового поколения, за исключением Radeon HD 6750 и HD 6770 на базе старых микросхем Juniper, где применяется UVD2. Поддерживаются самые свежие версии цифровых видеоинтерфейсов: DisplayPort 1.2 и HDMI 1.4a (с возможностью передачи 3D-видео).
На интерфейсах стоит остановиться отдельно, поскольку все карты серии Radeon HD 6000, включая самые доступные, поддерживают фирменную технологию AMD Eyefinity, позволяющей за счёт вывода нескольких каналов по шине DisplayPort подключать к одному разъёму сразу несколько мониторов. Пропускной способности интерфейса DisplayPort 1.2 достаточно для одновременного подключения к одному порту четырёх дисплеев. Возможны две конфигурации: использование специального хаба (разветвителя) оснащённого набором различных интерфейсов (DP, VGA, DVI или HDMI), либо последовательное соединение дисплеев, полностью совместимых с DisplayPort 1.2, то есть имеющих как входы, так и выходы DP.
Наконец, была переименована технология неграфических вычислений ATI Stream, которая теперь официально называется AMD Accelerated Parallell Processing. Принципиальных аппаратных доработок здесь нет, всё так же поддерживаются API OpenCL и DirectCompute.
Графический процессор Juniper не претерпел никаких изменений: это всё тот же урезанный Cypress с 10 SIMD-ядрами и видеодекодером UVD2, а чипы Radeon HD 6770 и HD 6750 в действительности представляют собой переименованные Radeon HD 5770 и 5770. Единственное отличие — поддержка HDMI 1.4, но неполная, без возможности работы с 3D-видео, которую даёт UVD3.
Бюджетный процессор Turks представляет собой серьёзно урезанный Barts: в нём 6 SIMD-ядер, в каждом из которых работают по 16 блоков потоковых процессоров с 5 ALU. Шина памяти сужена вдвое — до 128 бит. При этом в чипе реализованы все изменения, внесённые в Barts, включая улучшенный тесселятор, поддержку MLAA и видеодекодер UVD3. Младшая модификация Radeon HD 6570 может работать не только с видеопамятью GDDR5, но и с дешёвой памятью DDR3.
Чип начального уровня Caicos — предельно упрощённый Barts: в нём всего два SIMD-ядра и единственный 64-битный контроллер памяти. Производитель предлагает довольно широкий диапазон рабочих частот как процессора, так и видеопамяти, причём поддерживается оба варианта микросхем, как GDDR5, так и DDR3.
Графический процессор Cayman претерпел наибольшие изменения по сравнению с чипами Cypress предыдущего поколения, и они затронули не только чисто количественные показатели, но и саму архитектуру микросхемы. Для оптимизации энергопотребления и упрощения конструкции было принято решения отказаться от суперскалярной архитектуры VLIW5, в который каждый потоковый процессор оснащался пятью вычислительными блоками ALU: четыре из них были рассчитаны на выполнение простых арифметических операций, а пятый («трансцендентный») — на сложные алгебраические вычисления. Эта схема была разработана ещё инженерами ATI, но спустя годы стало очевидно, что она неоправданно усложняет чипы, не принося существенного прироста производительности.
В Cayman применяются потоковые процессоры нового типа на базе архитектуры VLIW4, состоящие из четырёх одинаковых вычислительных модулей ALU. При этом сложные операции выполняются тремя из четырёх модулей, что теоретически снижает общую производительность, однако заметно упрощает микросхему и уменьшает её площадь. Зато распределять задачи по одинаковым модулям значительно проще, а значит, и быстрее, в особенности при вычислениях с двойной точностью.
Кроме того, для подъёма производительности в Cayman используется целый ряд новых конструктивных решений. Процессор состоит из 24 SIMD-ядра с 16-ю блоками процессоров по 4 ALU в каждом. Флагман получил сразу 16 текстурных блоков для обработки геометрии и два блока тесселяции уже восьмого поколения. По данным самой AMD, это позволило втрое повысить скорость тесселяции у Radeon HD 6970 по сравнению с предыдущим флагманом HD 5870.
В чипах Cayman также реализован новый алгоритм сглаживания Enhanced Quality Anti-Aliasing (EQAA) и обеспечивающий значительно более высокое качество изображения, чем MSAA при существенно меньшей потери производительности, составляющей не более нескольких процентов.
Наконец, последняя из важнейших новых технологий, появившихся в Cayman, это технология динамического управления рабочими частотами и напряжением графического ускорителя AMD PowerTune. Благодаря датчикам, встроенным во все блоки микросхемы, управляющий модуль постоянно отслеживает нагрузку, температуру и напряжение и при превышении установленных значений снижать частоты и напряжение, предотвращая повреждение чипа. Через утилиту ATI Overdrive можно устанавливать свои предельные значения, но, разумеется, под ответственность пользователя.
В линейку AMD/ATI Radeon HD 6000 входят несколько графических карт: HD 6990 (Antilles), HD 6970 (Cayman XT), HD 6950 (Cayman Pro), HD 6870 (Barts XT), HD 6850 (Barts Pro), HD 6790 (Barts LE), HD6770 (Juniper XT), HD 6750 (Juniper Pro), HD 6670 и HD 6570 (Turks) и HD 6450 (Caicos).
К топовым моделям относится двухпроцессорная Radeon HD 6990, базовая HD 6970 и младшая HD 6950. Как обычно, хотя в HD 6990 устанавливаются два чипа HD 6970, их тактовая частота, а также частоты работы памяти, несколько понижены — это сделано для того, чтобы обеспечить разумное энергопотребление и благоприятный температурный режим для этой высокопроизводительной карты, по достоинству считающейся самым мощным в мире десктопным 3D-ускорителем и опережающей такого сильного конкурента, как двухпроцессорный NVIDIA GeForce GTX 590.
В картах применяется система двойных BIOS: одна из микросхем защищена от перезаписи, что позволяет восстановить работоспособность карты в случае неудачных экспериментов. Аппаратный переключатель BIOS расположен рядом с разъёмом CrossFireX.
Два графических процессора Cayman (кодовое название Antilles)
3072 универсальных процессора
2 х 96 текстурных и 2 х 32 блока блендинга
Тактовая частота ядра — 830 (880) МГц
Частота видеопамяти, эффективная — 5000 МГц (4 х 1250 МГц)
Тип видеопамяти — GDDR5