Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Нейтрино - призрачная частица атома - Айзек Азимов на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Распадаясь, торий-234 излучает β-частицу. Внутри ядра тория нейтрон превращается в протон. Это превращение тория-234 происходит с такой скоростью, что период полураспада равен двадцати четырем дням, В других радиоактивных изотопах нейтроны гораздо медленнее превращаются в протоны. Например, калий-40 излучает β-частицы с периодом полураспада 1,3·109 лет. Некоторые изотопы вовсе не подвержены радиоактивному распаду. Так, в ядрах атомов кислорода-16, насколько известно, ни один нейтрон сам по себе не превращается в протон, т. е. период полураспада бесконечен. Однако нас больше всего интересует период полураспада свободного нейтрона. Свободный нейтрон не окружен другими частицами, которые делали бы его более или менее стабильным, удлиняя или укорачивая его период полураспада, т. е. в случае свободного нейтрона мы имеем, так сказать, неискаженный период полураспада. Оказывается, он равен примерно двенадцати минутам, следовательно, половина из триллиона нейтронов превращается в протоны и электроны в конце каждой двенадцатой минуты.

Глава 6. Античастицы

Лептоны и барионы

Остановимся еще раз на известных нам субатомных частицах. Прежде всего к ним относятся ядра различных элементов. Их мы рассматривать не будем, так как ядра атомов всех элементов, за исключением водорода-1, состоят из еще более мелких частиц. Именно эти частицы, названные физиками элементарными [14], и будут нас интересовать.

Я уже упоминал четыре частицы, которые называют элементарными: протон, нейтрон, электрон и фотон. Их можно разделить на две группы. Протон, нейтрон и другие тяжелые элементарные частицы, открытые после 1932 года, объединены под общим названием барионы (от греческого слова barys — тяжелый). Электрон имеет маленькую массу, а масса фотона равна нулю. Эти и другие легкие частицы, открытые после 1932 года, называют лептонами (от греческого слова leptos — легкий, слабый).

Четыре элементарные частицы можно классифицировать по другому признаку. Протон, электрон и фотон — стабильны. Другими словами, если бы во Вселенной был один-единственный протон (или электрон, или фотон), он существовал бы без изменения бесконечно долго. (Говоря точнее, любая из трех перечисленных частиц может претерпеть изменение, но лишь при взаимодействии с другими частицами.) Нейтрон является нестабильной частицей. Если бы во Вселенной существовал один нейтрон, он рано или поздно, а вероятнее всего в течение нескольких минут, распался бы на протон и электрон. Такая нестабильность свойственна самой природе частицы и не зависит от наличия частиц других видов.

Почему же нейтрон в этом отношении не похож на другие частицы? Превращение нейтрона в протон и электрон сопровождается уменьшением массы. Очевидно, существенно именно это уменьшение массы. Оказывается, при любом спонтанном распаде происходит уменьшение массы. Потерянная масса превращается в энергию. Во Вселенной имеется, по-видимому, общая тенденция перехода от вещества к энергии. Становится понятным тогда, почему стабилен фотон. Он имеет нулевую массу покоя и поэтому не может распасться на частицы меньшей массы. По той же причине стабильна любая частица, не имеющая массы.

Подобные рассуждения, однако, неприменимы для объяснения стабильности электрона. Электрон имеет хоть и ничтожную, но все же конечную массу покоя. Но если тенденция превращения массы в энергию универсальна, почему она щадит электрон? Почему он не распадается на один или несколько фотонов с нулевой массой покоя, энергия которых эквивалентна массе электрона?

Оказывается, этому процессу препятствует закон сохранения электрического заряда. Фотон не несет электрического заряда, и если бы электрон распался на фотоны, что стало бы с его отрицательным зарядом? Насколько физикам известно, не существует частицы с отрицательным зарядом легче электрона. Поэтому электрон не распадается.

А протон? Является ли он самой легкой частицей с положительным зарядом? Ответ оказался отрицательными физикам пришлось искать другое объяснение его стабильности.

Позитроны

Первый намек на существование положительно заряженной частицы легче протона был сделан в 1930 году, когда Поль Дирак сумел математически описать некоторые свойства электрона. Он пришел к заключению, что если его математические расчеты верны, электрон должен существовать в двух разных формах. Одна из них — обычный, хорошо известный электрон, который к к тому времени исследовали уже в течение более тридцати лет. Другая форма была очень похожа на обычный электрон, но вместо отрицательного заряда он имел положительный.

Спустя два года, в 1932 году, американский физик Карл Дэвид Андерсон, изучая космические лучи больших энергий, бомбардирующие Землю, в своем детекторе частиц обнаружил нечто, что вело себя точно так же, как электрон, но под действием магнитного поля отклонялось в противоположную сторону. Значит, эта частица вместо отрицательного заряда несла положительный. Так был открыт положительно заряженный электрон Дирака.

Андерсон назвал эту положительно заряженную частицу позитроном. Хотя этот термин используется чаще всего для названия открытой частицы, он неудачен, так как маскирует близкое родство с электроном. Иногда электрон и позитрон называют отрицательным электроном и положительным электроном. Такое наименование отражено в современных обозначениях этих частиц: e- и е+. Чтобы сохранить за электроном его имя, позитрон иногда называют антиэлектроном, где приставка «анти» означает «противоположный». По многим причинам антиэлектрон — наилучшее название, так как другие частицы тоже имеют свои противоположности, для которых используют приставку «анти». Все эти противоположные частицы объединены в группу античастиц.

В настоящее время принято обозначать античастицы символом частицы с горизонтальной линией над ним Так, позитрон можно обозначить 'e+, что указывает на то, что он не просто положительно заряженный электрон, а античастица (в fb2 версии горизонтальная линия заменена на на штрих перед символом из-за ограничений шрифтов — прим. верстальщика).

Вскоре после открытия Андерсона было обнаружено, что позитрон образуется некоторыми радиоактивными атомными ядрами, — конечно, не теми, которые существуют в природе, а специально полученными в лаборатории.

В 1934 году французские ученые супруги Фредерик и Ирен Жолио-Кюри, бомбардируя α-частицами атомы алюминия, получили фосфор-30, который спонтанно, т. е. самопроизвольно, излучал позитроны (в виде положительных β-частиц) и превращался в кремний-30. Атомный номер фосфора — 15, кремния—14, следовательно, радиоактивный распад можно записать:

P+15 → Si+14 + 'e+.

Электрический заряд снова сохраняется, так как 14 + 1 = 15.

Какие же процессы внутри ядра приводят к излучению позитрона? Массовые числа кремния-30 и фосфора-30 одинаковы, так что общее число нуклонов до быть в обоих случаях одним и тем же. С другой стороны, атомный номер ядра кремния-30 на единицу меньше, чем фосфора-30, следовательно, ядро кремния-30 содержит на один протон меньше, чем ядро фосфора-30. Чтобы уменьшить число протонов на единицу, не изменяя общего числа нуклонов, надо одновременно добавить один нейтрон. Другими словами, позитрон излучается тогда, когда внутри ядра протон превращается в нейтрон. При этом атомный номер уменьшается на единицу а массовое число остается неизменным. Процесс прямо противоположен тому, который приводит к излучению электрона, когда нейтрон превращается в протон. Но этого и следовало ожидать, так как позитрон является как бы зеркальным отображением электрона и все происходящее с ним является отображением событий, происходящих с электроном.

С другой стороны, протон легче нейтрона, поэтому неудивительно, что именно нейтрон спонтанно превращается в протон, так как спонтанные превращения всегда сопровождаются уменьшением массы. Но как же тогда протон спонтанно превращается в нейтрон и испускает позитрон?

Действительно, протон легче нейтрона, если речь идет о свободных частицах. Внутри ядра, однако, происходят изменения энергии, которые слегка меняют массу отдельных нуклонов. Иногда масса ядра уменьшается, если протон превращается в нейтрон, а иногда, если нейтрон заменяется протоном, изменение массы всецело зависит от строения ядра. В первом случае излучаются позитроны, а во втором — электроны, Конечно, имеются ядра, обладающие при данном числе нуклонов комбинацией нейтронов и протонов, при которой масса минимальна. Тогда превращение протона нейтрон или нейтрона в протон увеличивает массу. Такие ядра не претерпевают никаких спонтанных превращений, они стабильны, если это не тяжелые ядра, которые излучают α-частицы.

Еще раз напомним, что свободные нейтроны могут спонтанно превратиться в протоны, обратное же превращение невозможно.

Позитрон, как и электрон, — стабильная частица. Насколько нам известно, сам по себе он никогда не изменяется, так как позитрон — самая легкая частица, несущая положительный электрический заряд. Стабильность ее является выражением закона сохранения электрического заряда. Однако позитрон существует во Вселенной, состоящей из бесчисленного множества других частиц, в том числе электронов. В обычных условиях позитрон сталкивается с электроном через одну миллионную секунды, а когда частица встречает свою античастицу, обе перестают существовать.

Нечто подобное происходит в том случае, когда деревянная пробка вставляется в отверстие в деревянной поверхности, к которому она точно подогнана, — в «антипробку». Пробка и «антипробка» исчезают, а вместо них появляется гладкая деревянная поверхность, При слиянии позитрона и электрона выполняются различные законы сохранения. Если частицы, двигаясь с одинаковыми скоростями навстречу друг другу, сталкиваются «в лоб», два импульса, складываясь, дают нуль. Если электрон имеет спин -1/2, а позитрон +1/2, суммарный спин системы тоже нуль. Электрон имеет заряд -1, а позитрон +1, следовательно, общий электрический заряд двух частиц равен нулю. Кажется, что происходит полная аннигиляция (уничтожение).

А что происходит с энергией, которая не существует в положительной или отрицательной форме и которая, следовательно, в сумме никогда не равна нулю? После аннигиляции электрона и позитрона энергия, связанная с их массой и движением, должна продолжать существовать в той или иной форме. Оказывается, обе частицы превращаются в фотоны. Энергия, эквивалентная массе электрона, равна 0,51 Мэв. Но позитрон имеет такую же массу, поэтому энергия, эквивалентная общей массе, равна 1,02 Мэв. Следовательно, каждый раз, когда пара позитрон — электрон аннигилирует, должна освобождаться энергия 1,02 Мэв. Экспериментальная проверка энергетического баланса при аннигиляции явилась превосходным подтверждением справедливости закона сохранения энергии для процессов, происходящих в субатомном мире.

Какие же фотоны возникают при аннигиляции пары электрон — позитрон? Фотоны не имеют заряда, но они должны иметь импульс и момент количества движения. Если бы возникал один фотон, должны были бы возникнуть импульс и момент количества движения, а это невозможно в силу закона сохранения. В действительности возникают два разлетающихся в противоположных направлениях фотона, каждый из которых уносит энергию 0,51 Мэв, поэтому их суммарный импульс равен нулю. Один фотон имеет спин +1, другой -1, так что суммарный момент количества движения тоже равен нулю.

Если суммарный импульс или момент количества движения электрона и позитрона до аннигиляции отличны от нуля, они сохранятся и после аннигиляции. Предположим, каждая из частиц имеет спин +1/2, следовательно, суммарный спин равен +1. Если бы система обладала импульсом, то мог бы возникнуть один фотон со спином +1. Когда же суммарный импульс системы равен нулю, закон сохранения импульса и момента количества движения будет выполнен, если возникнут три фотона энергией 0,34 Мэв каждый, разлетающихся по направлению трех вершин равностороннего треугольника. При этом суммарный импульс трех фотонов равен нулю, а суммарный спин +1, если спины фотонов равны +1, +1, -1 соответственно.

Превращение электрон-позитронной пары в фотоны γ-излучения можно записать следующим образом:

e- + 'e+ → γ + γ + γ.

Существует обратный процесс — превращение энергии в массу. Фотон γ-лучей с энергией 1,02 Мэв при определенных условиях превращается в электрон-позитронную пару. Для фотона с меньшей энергией этот процесс невозможен, а более энергичный фотон отдает излишки своей энергии разлетающимся частицам. Фотон γ-лучей никогда не превращается только в электрон или только в позитрон. При таком превращении закон сохранения заряда был бы нарушен. Короче говоря, независимо от того, как происходит электрон-позитронная аннигиляция, должны сохраняться четыре основные величины: импульс, момент количества движения, электрический заряд и энергия.

Антинуклоны

Теорию Дирака, предсказавшую существование положительно заряженного электрона, применили к протону. Было высказано предположение, что должен существовать отрицательно заряженный протон — антипротон. После открытия позитрона физики были убеждены, что антипротон существует и его можно получить в лаборатории. Трудность заключалась в том, что протон в 1836 раз тяжелее электрона и, если для создания пары электрон — позитрон требуется энергия 1,02 Мэв, для создания протона и антипротона потребовалось бы минимум 1872 Мэв. Только после 1950 года физики получили устройство, которое позволяло концентрировать такую энергию в малом объеме.

В 1956 году итальянский физик Эмилио Сегре, работающий в США, и его американский коллега Оуэн Чемберлен закончили работу, в результате которой убедительно доказали существование антипротона. Когда протон и антипротон встречаются, они аннигилируют подобно электрон-позитронной паре. Только в случае аннигиляции протон-антипротонной пары выделяется гораздо большая энергия. Если обозначить антипротон 'р-, то процесс аннигиляции можно записать следующем виде:

p+ + 'p- → γ + γ

В 1965 году была получена обратная реакция, когда γ-излучение большой энергии было превращено в протон-антипротонные пары.

Правда, при взаимодействии протона и антипротона наблюдали новое явление. Почти сразу же после открытия антипротона было обнаружено, что иногда, если протон и антипротон сталкиваются, едва касаясь друг друга, электрический заряд обоих исчезает, но массы не уничтожаются. Вместо двух заряженных тяжелых частиц образуются две тяжелые незаряженные частицы: вместо протона возникает нейтрон, а вместо антипротона — антинейтрон. Если последний обозначить символом 'п, можно записать:

p+ + 'p- n + 'п.

Антинейтрон и антипротон называют антинуклонами. Нуклоны и антинуклоны принадлежат к барионам (как позитроны к лептонам).

Но что же такое антинейтрон? Позитрон отличается от электрона зарядом, и антипротон отличается от протона зарядом. Антинейтрон, как и нейтрон, не заряжен. Чем же они тогда отличаются?

Ответ, очевидно, надо искать в природе спина. Предположим, что субатомная частица — крошечная сфера, вращающаяся вокруг своей оси и обладающая двумя полюсами. Если посмотреть на частицу со стороны одного из полюсов, будет казаться, что она вращается против часовой стрелки, а со стороны другого полюса — по часовой стрелке. Назовем полюс, с которого кажется, что частица вращается против часовой стрелки, северным. (Подобно этому вращение Земли с запада на восток происходит против часовой стрелки, если смотреть на Землю со стороны северного полюса.) При вращении заряженная частица создает магнитное поле, в котором есть и северный, и южный магнитные полюса. В протоне северный магнитный полюс совпадает с северным полюсом, а в антипротоне северный магнитный полюс совпадает с южным. Другими словами, магнитное поле антипротона противоположно магнитному полю протона (рис. 5). Магнитные и электрические свойства частицы противоположны соответствующим свойствам античастицы.

Рис. 5. Магнитные полюса протона и антипротона.

Хотя нейтрон не имеет электрического заряда, тем не менее он имеет связанное с ним магнитное поле. Причина этого не совсем ясна, но физики подозревают, что протон состоит из областей с положительным и отрицательным зарядом, расположенных несимметрично, что приводит к появлению магнитного поля. Магнитное поле нейтрона ориентировано в одном направлении, а антинейтрона — в другом. Именно в этом и заключается их различие.

Масса антинейтрона равна массе нейтрона, а масса антипротона — массе протона. Это означает, что антинейтрон несколько тяжелее антипротона и, следовательно, может в него превратиться. При распаде антинейтрона с нулевым зарядом в антипротон с зарядом -1 возникает отрицательный заряд. Согласно закону сохранения электрического заряда, при таком превращении одновременно должен возникнуть и положительный заряд. Положительный заряд появляется в виде позитрона:

'п → 'p- + 'e+.

Распад антинейтрона аналогичен во всех отношениях распаду нейтрона (за исключением обратных зарядов). Даже период полураспада в обоих случаях одинаков. Процесса, обратного антинейтронному распаду, нет. Антипротон сам по себе стабилен, так же как протон, и, насколько мы знаем, остается неизменным.

Сохранение барионного числа

До сих пор мы не ответили на вопрос: почему протон стабилен? Теперь мы можем к этому вопросу добавить другой: почему стабилен антипротон? Совершенно неуместно говорить о том, что протон имеет наименьшую массу, с которой связан положительный заряд. Такое искушение могло у нас возникнуть, пока мы не ввели античастицы. Ведь протон мог бы распасться на позитрон и фотоны γ-лучей. При этом электрический заряд сохранился бы, а все другие законы сохранения удовлетворились бы автоматически. Подобным образом антипротон мог бы распасться на электрон и γ-квант.

Если какой-нибудь распад не нарушает ни одного из законов сохранения в субатомном мире, он должен иметь место. Распад может быть очень редким явлением, но он обязательно должен происходить. Если, с другой стороны, какой-то субатомный процесс упорно не желает протекать, значит, он нарушает какой-нибудь закон сохранения.

Протон никогда не распадается на позитрон. Этот процесс не нарушает ни один из известных нам законов сохранения, следовательно, ему препятствует какой-то новый закон. Превращение протона в позитрон не нарушает закона сохранения электрического заряда, так как оба несут положительный заряд, равный единице. А свойства позитрона и фотонов, образующихся из протона, легко подобрать таким образом, чтобы не нарушались законы сохранения импульса, момента количества движения и энергии.

Итак, физикам пришлось сделать вывод о том, что существует пятый, прежде неизвестный закон сохранения. Когда они еще раз внимательно стали изучать все субатомные процессы, которые они знали, им начало казаться, что барионы вообще никогда не исчезают. Всякий раз, когда исчезал барион одного вида, мгновенно возникал барион другого вида. Конечно, когда барион встречается с антибарионом (например, когда протон встречает антипротон), обе частицы могут исчезнуть, не оставив взамен никакого другого бариона.

Чтобы разобраться в таком странном поведении барионов, всем субатомным частицам физики приписали определенные барионные числа. Протон и нейтрон получили барионные числа +1 каждый, а антипротон и антинейтрон -1 каждый. Всем лептонам (электрону, позитрону и фотону) приписали нулевые барионные числа. Итак был сформулирован новый закон: суммарное барионное число замкнутой системы постоянно. (Все законы сохранения, рассмотренные нами, были открыты при исследовании явлений обычной повседневной жизни а затем применены к атому. Теперь мы в первый, но не в последний раз встретились с законом сохранения, возникшим непосредственно при изучении явлений, происходящих в субатомном мире.)

Рассмотрим несколько примеров. При радиоактивных превращениях ядро урана-238 распадается на ядро тория-234 и α-частицу (гелий-4). Ядро урана-238 содержит в общей сложности 238 протонов и нейтронов, следовательно, его барионное число 238. Аналогично барионное число тория-234 равно 234, а α-частицы — 4. Поскольку сумма барионных чисел тория-234 и α-частицы равна 238, барионное число в этом процессе сохраняется. Далее, ядро тория-234 излучает β-частицу (т. е. электрон с нулевым барионным числом) и превращается в ядро протактиния-234. Следовательно, барионное число снова сохраняется. В действительности оно сохраняется во всех известных радиоактивных превращениях. А что происходит с барионным числом элементарных частиц? Если нейтрон распадается на протон и электрон, барионное число сохраняется, так как сумма барионных чисел протона и электрона равна единице. Точно так же сохраняется барионное число и при распаде антинейтрона на антипротон и позитрон.

Если протон и антипротон, взаимодействуя, превращаются в нейтрон и антинейтрон, суммарные барионные числа до и после реакции равны. Если взаимодействуют протон и антипротон, образуя два γ-кванта (или любое число их), закон сохранения барионного числа снова выполняется, так как +1–1 = 0 + 0.

Во всех известных до сих пор атомных и субатомных процессах барионное число сохраняется. Физики ни разу не сталкивались с нарушением закона сохранения барионного числа. Теперь становится понятно, почему протон не превращается спонтанно в позитрон, а антипротон — в электрон. В первом случае барионное число +1 стало бы нулем, а во втором — в нуль превратилось бы барионное число -1. Ни одно из этих превращений невозможно без нарушения закона сохранения барионного числа.

В самом деле, насколько мы знаем, протон и антипротон — наименее тяжелые из известных барионов. Именно поэтому они стабильны. Любое спонтанное превращение означало бы появление менее тяжелых частиц. Но любая более легкая частица — не барион, и, следовательно, за кон сохранения барионного числа был бы нарушен.

По закону сохранения электрического заряда, казалось бы, ни один электрон не возникает без одновременного рождения позитрона. Согласно тому же закону и закону сохранения барионного числа, ни один протон не возникает без одновременного рождения антипротона. В окружающей нас Вселенной электронов и протонов сколько угодно, а позитроны и антипротоны исключительно редки. Почему?

Убедительного ответа на этот вопрос еще нет. Одна гипотеза предполагает, что, когда возникла наша Вселенная, частиц и античастиц было равное количество, но они были как-то разделены. Возможно, кроме нашего мира существует также антимир. Все вещества нашего мира состоят из атомов с ядрами из протонов и нейтронов и с электронами во внешних областях атома. В антимире антиматерия должна состоять из атомов с ядрами из антипротонов и антинейтронов и с позитронами вместо электронов во внешних областях атома. В антимире обычное вещество встречалось бы исключительно редко. (До недавнего времени антивещество оставалось просто теоретической концепцией. Однако в 1965 году физики Брукхейвенской национальной лаборатории получили очень недолговечные ядра из антипротона и антинейтрона. Известно, что ядро водорода-2 состоит из протона и нейтрона. Водород-2 часто называют дейтерием, поэтому систему протон + нейтрон назвали дейтроном, а систему антипротон + антинейтрон — антидейтроном. Антидейтрон — простейший вид антиматерии, который представляет собой более сложное образование по сравнению с элементарной частицей. Без сомнения, придет время, когда более сложные формы антивещества будут созданы в лаборатории.

Не исключена возможность, что в нашей Вселенной присутствуют одновременно и вещество и антивещество, но находятся они в разных галактиках. Трудно определить, видим ли мы в телескопы галактики или антигалактики. На первый взгляд кажется, что галактику от антигалактики можно отличить по излучаемому свету. Если обычное вещество излучает фотоны, антивещество должно излучать «антифотоны». Нельзя ли их различить? К несчастью, нет! Если существуют антифотоны, аннигиляция частиц и античастиц привела бы к образованию одинакового числа фотонов и антифотонов. Однако образуются только фотоны, поэтому физики сделали вывод, что фотон является собственной античастицей, т. е. излучение вещества и антивещества должно быть совершенно одинаково, и по нему нельзя различить две галактики. (Однако позднее мы убедимся, что не все еще потеряно.) Если бы и материя и антиматерия сосуществовали в нашей Вселенной, они могли бы случайно встретиться в значительных количествах. Если бы это произошло, при аннигиляции выделилось бы колоссальное количество энергии, гораздо больше, чем при ядерных реакциях внутри таких звезд, как наше Солнце.

В действительности существуют галактики и другие космические объекты, которые излучают необычно большие потоки энергии в виде света или радиоволн, или того и другого вместе. Сейчас астрономы заняты попытками определить источник этой энергии. Аннигиляция вещества и антивещества — возможный, но не единственный ее источник.

Глава 7. Появление нейтрино

Энергия α-частицы

Законы сохранения строго выполнялись во всех случаях, описанных в предыдущих главах. Когда один из законов оказывался несовершенным, приходилось интерпретировать его по-другому. Так, старый закон сохранения массы был расширен и превращен в более общий закон сохранения энергии. С другой стороны, когда ожидаемые события в действительности не происходили, придумали новый закон сохранения (как было в случае закона сохранения барионного числа). Однако не всегда легко доказать, что законы сохранения выполняются точно. Особенно загадочная ситуация возникла на заре развития ядерной физики при изучении кинетической энергии частиц, испускаемых радиоактивными веществами.

Энергию α-частицы можно определить, измеряя массы исходного радиоактивного ядра, α-частицы и конечного ядра. Суммарная масса α-частицы и конечного ядра должна быть немного меньше массы исходного ядра, а энергетический эквивалент недостающей массы равняться кинетической энергии α-частицы. Измерять с высокой точностью массы различных ядер и других частиц физики смогли только в 20-х годах нашего столетия. Тем не менее, некоторые важные выводы относительно энергий частиц они сделали, не зная точного значения масс.

Рассмотрим торий-232, который распадается на α-частицу (гелий-4) и радий-228. Все ядра тория-232 имеют одинаковые массы. Массы всех ядер радия-228 также имеют одинаковую величину, как и массы всех α-частиц. Не зная величину этих масс, все же можно сказать, что каждый раз, когда атом тория-232 испускает α-частицу, дефицит массы должен быть одинаков, а следовательно, должна быть одинакова и кинетическая энергия α-частиц. Другими словами, торий-232 должен испускать α-частицы с одной и той же энергией.

Как же определить кинетическую энергию α-частиц? Известно, что чем больше энергия α-частицы, тем глубже она проникает в вещество. α-Частицы тормозятся очень тонким слоем твердого вещества, но могут пройти сквозь слой воздуха толщиной в несколько сантиметров. При этом α-частицы непрерывно передают энергию молекулам воздуха, с которыми они сталкиваются, постепенно замедляются и, захватывая электроны, становятся в конце концов обычными атомами гелия. В таком состоянии их уже нельзя обнаружить методами, с помощью которых регистрируются α-частицы, так что фактически они исчезают.

Обнаружить α-частицы можно при помощи пленки химического соединения, называемого сернистым цинком. Каждый раз, когда α-частица налетает на такую пленку, она вызывает слабую вспышку света. Если рядом с источником α-частиц (скажем, кусочком тория-232 в свинцовом контейнере с очень узким отверстием) поместить сцинтилляционный счетчик, то число вспышек будет соответствовать количеству образующихся α-частиц. Если сцинтилляционный счетчик располагать все дальше и дальше от источника, α-частицы должны будут проходить через все больший и больший слой воздуха, чтобы попасть в него. Если бы α-частицы испускались с различными энергиями, то обладающие наименьшей энергией исчезли бы очень быстро, более «энергичные» α-частицы прошли бы больший путь в воздухе и т. д. В результате по мере удаления сцинтилляционного счетчика от источника число α-частиц, попадающих в счетчик, должно было бы постепенно уменьшаться. Если бы α-частицы вылетали с одинаковой энергией, все они проходили бы в воздухе одинаковый путь. Следовательно, сцинтилляционный счетчик должен был бы регистрировать одно и то же число частиц по мере удаления от источника, вплоть до некоторой критической точки, за которой он не зарегистрировал бы ни одной вспышки.

Именно это явление наблюдал английский физик Уильям Генри Брэгг в 1904 году. Почти все α-частицы, вылетающие из ядер одного и того же элемента, имели одну и ту же энергию и обладали одинаковой проникающей способностью. Все α-частицы тория-232 проходили слой воздуха толщиной 2,8 см, все α-частицы радия-226— 3,3 см, а α-частицы полония-212 — 8,6 см [15]. На самом деле имеются некоторые отклонения. В 1929 году было обнаружено, что небольшая часть частиц одного и того же радиоактивного ядра может обладать необычайно большой кинетической энергией и большей проникающей способностью, чем остальные. Причина этого в том, что исходное радиоактивное ядро может находиться в одном из возбужденных состояний. В возбужденных состояниях ядра имеют большую энергию, чем в своем нормальном основном состоянии. Когда ядро испускает α-частицу, находясь в возбужденном состоянии, α-частица получает дополнительную энергию. В результате помимо основной группы α-частиц образуются маленькие группы α-частиц с большей проникающей способностью, по одной группе для каждого возбужденного состояния.

Когда радиоактивное ядро образуется при распаде другого ядра, оно иногда находится в возбужденном состоянии с момента своего образования. Тогда большая часть испускаемых им α-частиц имеет необыкновенно большую энергию, а α-частицы с меньшей энергией образуют небольшие группы. Эти отдельные группы α-частиц (от 2 до 13) с различными энергиями образуют спектр α-частиц данного ядра. Каждая компонента спектра соответствует, как и предполагали, одному из возбужденных состояний ядра. Итак, закон сохранения энергии α-частиц выполняется, чего нельзя сказать в случае β-частиц.

Энергия β-частицы

Если все выводы, сделанные для α-частиц, были бы применимы к β-частицам и выполнялись бы рассмотренные энергетические соотношения, все образующиеся при распаде ядер β-частицы обладали бы одной и той же кинетической энергией. Однако еще в 1900 году создалось впечатление, что β-частицы испускаются с любой энергией вплоть до некоторого максимального значения. В течение последующих пятнадцати лет доказательства постепенно накапливались, пока не стало совершенно ясно, что энергии β-частиц образуют непрерывный спектр.

Каждое ядро, испуская в процессе распада β-частицу, теряет определенное количество массы. Уменьшение массы должно соответствовать величине кинетической энергии β-частицы. При этом кинетическая энергия β-частицы любого из известных нам радиоактивных ядер не превышает энергии, эквивалентной уменьшению массы. Таким образом, уменьшение массы при любом радиоактивном распаде соответствует максимальному значению кинетической энергии β-частиц, образующихся в процессе этого распада.

Но, согласно закону сохранения энергии, ни одна из β-частиц не должна обладать кинетической энергией меньше энергии, эквивалентной уменьшению массы, т. е. максимальная кинетическая энергия β-частицы должна быть одновременно и минимальной. В действительности это не так. Очень часто β-частицы испускаются с меньшей кинетической энергией, чем следует ожидать, причем максимального значения, соответствующего закону

сохранения энергии, вряд ли достигает хоть одна β-частица. Одни β-частицы обладают кинетической энергией, несколько меньшей максимального значения, другие — значительно меньшей, остальные — намного меньшей. Наиболее распространенная величина кинетической энергии равна одной трети максимального значения. В общем, более половины энергии, которая должна возникать вследствие уменьшения массы при радиоактивных распадах, сопровождающихся образованием β-частиц, нельзя обнаружить.

В двадцатых годах многие физики были склонны уже отказаться от закона сохранения энергии, по крайней мере для тех процессов, в которых образуются β-частицы. Перспектива была тревожной, так как закон оставался справедлив во всех других случаях. Но существует ли другое объяснение этого явления?

В 1931 году Вольфганг Паули предложил следующую гипотезу: β-частица не получает всю энергию из-за того, что образуется вторая частица, которая уносит остаток энергии. Энергия может распределиться между двумя частицами в любых пропорциях. В некоторых случаях почти вся энергия передается электрону, и тогда он имеет почти максимальную кинетическую энергию, эквивалентную уменьшению массы.

Иногда почти вся энергия передается второй частице, тогда энергия электрона фактически равна нулю. Когда энергия распределяется между двумя частицами более равномерно, электрон имеет промежуточные значения кинетической энергии.

Какая же частица удовлетворяет предположению Паули? Вспомним, что β-частицы возникают всякий раз, когда внутри ядра нейтрон превращается в протон. При рассмотрении превращения нейтрона в протон, несомненно, проще иметь дело со свободным нейтроном. Нейтрон не был открыт, когда Паули впервые предложил свою теорию. Мы же можем воспользоваться преимуществом ретроспективного взгляда.

При распаде свободного нейтрона на протон и электрон, последний вылетает с любой кинетической энергией вплоть до максимальной, которая приблизительно равна 0,78 Мэв. Ситуация аналогична испусканию радиоактивным ядром β-частицы, поэтому при рассмотрении распада свободного нейтрона необходимо учесть частицу Паули.

Обозначим частицу Паули х и попробуем выяснить ее свойства. Запишем реакцию распада нейтрона:

п р+ + е- + х.

Если при распаде нейтрона выполняется закон сохранения электрического заряда, х-частица должна быть нейтральной. Действительно, 0=1–1+0. При распаде нейтрона на протон и электрон потеря массы составляет 0,00029 единиц по атомной шкале масс, что приблизительно равно половине массы электрона. Если бы x-частица получила даже всю энергию, образующуюся в результате исчезновения массы, и если бы вся энергия пошла на образование массы, масса х составляла бы только половину массы электрона. Следовательно, x-частица должна быть легче электрона. На самом деле она должна быть значительно легче, так как обычно электрон получает большую часть выделяющейся энергии, а иногда почти всю. Более того, вряд ли энергия, переданная х-частице, полностью превращается в массу; значительная часть ее переходит в кинетическую энергию х-частицы. С годами оценка массы х-частиц становилась все меньше и меньше. Наконец, стало ясно, что х-частица, как и фотон, не имеет массы, т. е. подобно фотону она распространяется со скоростью света с момента своего возникновения. Если энергия фотона зависит от длины волны, энергия х-частицы зависит от чего-то аналогичного.

Следовательно, частица Паули не имеет ни массы, ни заряда, и становится понятным, почему она остается «невидимкой». Заряженные частицы обычно обнаруживают благодаря ионам, которые они образуют. Незаряженный нейтрон был обнаружен из-за большой массы. Частица без массы и без заряда ставит физика в тупик и лишает его какой бы то ни было возможности поймать и изучить ее.

Вскоре после того, как Паули предположил существование х-частицы, она получила имя. Сначала её хотели назвать «нейтроном», так как она не заряжена, но через год после появления гипотезы Паули Чедвик открыл тяжелую незаряженную частицу, которая получила это имя. Итальянский физик Энрико Ферми, имея в виду, что х-частица намного легче нейтрона Чедвика, предложил назвать х-частицу нейтрино, что по-русски значит «нечто маленькое, нейтральное». Предложение было очень удачным, и с тех пор она так и называется. Обычно нейтрино обозначают греческой буквой ν «ню») и распад нейтрона записывают следующим образом:

п р+ + е- + ν..

Нейтрино совершенно необходимо

Гипотеза Паули о существовании нейтрино и последовавшая затем детальная теория рождения нейтрино, созданная Ферми, были по-разному встречены физиками. Никто не желал отказываться от закона сохранения энергии, хотя имелись серьезные сомнения относительно необходимости спасения этого закона с помощью частицы без массы и без заряда, частицы, которую нельзя обнаружить, частицы, единственным основанием для существования которой было просто желание спасти закон сохранения энергии. Некоторые физики считали ее призрачной частицей, своего рода трюком для спасения энергетической «бухгалтерии». Фактически концепция нейтрино была просто способом выражения того, что «закон сохранения энергии не выполняется» [16]. Закон сохранения энергии оказался не единственным, спасенным нейтрино.

Рассмотрим неподвижный нейтрон, т. е. нейтрон с нулевым импульсом относительно наблюдателя. При его распаде суммарный импульс протона и электрона должен равняться нулю, если распад сопровождается образованием только двух частиц. Электрон должен вылететь в одном направлении, а протон точно в противоположном (но с меньшей скоростью, так как его масса больше).

Однако это не так. Электрон и протон испускаются в направлениях, которые образуют определенный угол. Небольшой суммарный импульс в направлении вылета частиц возникает как бы из ничего, и закон сохранения импульса нарушается. Однако, если при этом возникает нейтрино, оно может вылететь в таком направлении, что в точности скомпенсирует суммарный импульс двух других частиц (рис. 6).

Другими словами, закон сохранения импульса выполняется только благодаря нейтрино.

Рис. 6. Распад нейтрона.

Легко видеть, что аналогично обстоит дело и с моментом количества движения. Нейтрон, протон и электрон имеют спин +1/2 или -1/2 каждый. Предположим, что спин нейтрона +1/2. При его распаде суммарный спин протона и электрона должен быть равен +1/2, если закон сохранения момента количества движения справедлив и при распаде образуются только эти две частицы. Возможно ли это? Спины протона и электрона могут быть равны +1/2 и +1/2; +1/2 и -1/2; -1/2 и -1/2, т. е. суммарный спин обеих частиц равен +1, 0 и — 1 соответственно. Он не равен и никогда не может быть равен +1/2 или -1/2, если вначале спин нейтрона был равен -1/2. Короче говоря, если нейтрон распадается только на протон и электрон, закон сохранения момента количества движения нарушается.

Но предположим, что при распаде возникает нейтрино со спином +1/2 или -1/2. Тогда суммарный спин трех возникших при распаде частиц всегда будет равен спину исходного нейтрона. Следовательно, существование нейтрино «спасает», по крайней мере, три закона: закон сохранения энергии, импульса и момента количества движения. Примечательно, что одна и та же частица выполняет тройную работу.

Трудно сказать, что было хуже: признать существование одной загадочной, призрачной частицы или нарушение одного закона сохранения. Значительно легче сделать выбор между призрачной частицей и нарушением сразу трех законов сохранения. Пришлось физикам выбрать призрачную частицу. Постепенно существование нейтрино было признано ядерщиками. Они перестали сомневаться в реальности нейтрино независимо от того, могли его обнаружить или нет.

Сохранение лептонного числа

Нейтрино не только спасает три закона сохранения, но и создает один новый. Чтобы понять, как это происходит, рассмотрим нейтрино применительно к античастицам.



Поделиться книгой:

На главную
Назад