Введение
Много-много лет назад человек, ведя тяжелую борьбу с силами природы за собственное существование, обратил вдруг свое внимание на окружающий мир. С тех пор, вероятно, люди и не перестают удивляться. Что представляет собой окружающий мир? Что им управляет? Каково его назначение?
Бесконечные вопросы, неуверенные попытки ответить.
Первые наивные ответы дошли до нас в виде Мифов.
Систематические попытки решить загадку Вселенной с помощью разума, а не мистицизма, двадцать пять столетий назад предприняли греки. Во второй половине шестнадцатого столетия ученые окончательно пришли к выводу, что одних только умозаключений недостаточно, необходим эксперимент.
Начавшийся с 1580 года подъем экспериментальной науки дал возможность человечеству получить часть ответов на загадки Вселенной. Раньше люди даже не мечтали о таких исчерпывающих ответах.
В процессе познания научная картина Вселенной настолько отдалилась от привычной, что связь с реальностью казалась потерянной. Возникло то, что можно было бы назвать «научной мифологией».
Человеческий разум парил далеко за пределами непостижимо большого космоса и проникал внутрь непостижимо малых, крошечных структур.
Величина Галактики лежит за пределами привычных представлений. Наш собственный Млечный Путь состоит примерно из ста тридцати миллиардов звезд разных размеров и имеет сложную спиральную структуру. Земля по сравнению с ним кажется пылинкой. И все же астрономы вышли за пределы Млечного Пути к миллиардам галактик, занимающих колоссальные пространства и живущих десятки миллиардов лет, а возможно, и вечно. Звезды можно видеть невооруженным глазом, галактики — в телескоп. Легко видеть, что они несоизмеримы.
Величина атома также лежит за пределами реальности, но он невидим. Отдельный атом так мал, что сто миллионов их, расположенных один за другим, едва покроют расстояние в один сантиметр. Поэтому, будучи на осязаемым, невидимым, он казался довольно мифическим, но ученые проникли и в его недра. Для создания научной картины микромира были привлечены частицы, гораздо меньшие, чем атом, — частицы настолько малые, что сто тысяч их, расположенных одна за другой, едва ли покроют один атом.
Но самой странной из них является частица, совсем не имеющая размера, не обладающая, казалось бы, ни одним из свойств, присущих обычным телам. Она так мала, такое совершенное «ничто», что проникает сквозь бесконечно толстый слой плотного вещества, словно не подозревая о его существовании. Эта частица — «призрак» — была названа нейтрино. Единственной причиной, побудившей ученых предположить ее существование, была необходимость свести в теоретических расчетах концы с концами. Предположение о существовании нейтрино было сделано с крайней неохотой, так как даже ученые чувствовали, что фокус с частицей-«призраком» зашел слишком далеко. Но, к удивлению всех, даже самих ученых, частица — «призрак» оказалась реальной.
В настоящей книге я попытаюсь описать одну из величайших научных авантюр, а именно то, как сначала частица-«призрак» была с большой неохотой предложена, а потом с триумфом открыта. Для этого я буду вынужден вернуться к началу современной экспериментальной науки, чтобы проследить длинную цепь рассуждений, приведших в конце концов к рождению концепции нейтрино.
Глава 1. Импульс
Обобщения
Мы любим иногда придумывать фантастические места, где случаются самые невероятные вещи. Известны описания подобных мест в книгах Льюиса Кэрролла «Алиса в стране чудес» и «В Зазеркалье». В этих книгах кролики, лягушки, гусеницы разговаривают, играют в карты и шашки. Алиса становится внезапно то больше, то меньше, летает без крыльев и прыгает с большой высоты. Она встречает легендарных чудовищ и наблюдает за тем, как женщина превращается в овцу.
В таких местах интересно бывать, но наверняка никто не захотел бы жить в них. Гораздо удобнее жить в обычном мире, где происходят только вполне привычные события.
Другими словами, мы верим, что наш мир подчиняется определенным правилам, и дело ученых — попытаться выяснить, что это за правила. Ученый внимательно наблюдает события и, если замечает, что какое-нибудь явление происходит периодически, приходит к выводу, что иначе и быть не может. Тогда он формулирует правило, которое тем лучше, чем большее число случаев оно охватывает и чем меньше исключений имеет. Хорошее научное правило не должно иметь никаких исключений.
В качестве примера рассмотрим правило: все зеленые камни, подброшенные в воздух, падают обратно.
Такое правило полезно, так как оно говорит нам о том, чего следует ждать от зеленых камней, а чего нет. Если вы подбрасываете вверх зеленый камень, вы уверены, что он упадет обратно, и на этой основе планируете свои действия. Но опыт, однако, говорит, что все голубые камни, подброшенные в воздух, тоже падают обратно. И все серые камни ведут себя точно так же. Значит, правило станет более общим, если сказать: все камни, подброшенные в воздух, падают обратно. Можно сделать правило даже еще более общим: все, что подбрасывается вверх, должно падать вниз.
Если правило охватывает очень широкий круг событий, возникает соблазн назвать его «законом природы». Мне кажется, лучше назвать очень общее правило просто обобщением. Этот термин подчеркивает, что правила создано человеком и выведено им из ряда наблюдений. Обобщение можно опровергнуть, если доказать, что оно неверно, обобщение может иметь исключения, оно может выполняться только при определенных условиях.
Почти каждый согласится с тем, что обобщение «все, что подбрасывается вверх, падает вниз» — очень широкое и полезное. Но является ли оно «законом природы»? Камни, баскетбольные и волейбольные мячи, кирпичи и многие другие вещи, подброшенные в воздух, в самом деле падают обратно. Но как же быть с птицей или аэропланом? Птица наверняка в конце концов упадет вниз после того, как она умрет, а аэроплан, — если кончится горючее, не раньше. Кроме того, птица и аэроплан падают вниз совсем не так, как камень. Должны ли мы заменить обобщение следующим: «все, что подбрасывается вверх, должно падать вниз, но не обязательно немедленно»?
А как же быть с клубами дыма, с баллоном, наполненным гелием, или с крошечными пылинками? Они плавают в воздухе и не испытывают потребности опуститься вниз. Значит, обобщение нужно заменить следующим: «все, что подбрасывается вверх, должно падать вниз, но не обязательно немедленно и только тогда, когда оно тяжелее воздуха, или если опыт проводится в вакууме»? Но ведь остается еще ракета, которая «простреливает» пространство со скоростью одиннадцать километров в секунду. С такой скоростью ракета может выйти на орбиту вокруг Солнца и никогда не вернуться на земную поверхность. Должны ли мы изменить правило следующим образом: «все, что подбрасывается вверх, должно падать вниз, но не обязательно немедленно, и только тогда, когда оно тяжелее воздуха или опыт проводится в вакууме; и когда его скорость меньше одиннадцати километров в секунду»?
Как видите, обобщение, сделанное сначала в простой форме, становится все более и более громоздким. Нелегко найти в высшей степени полезное обобщение, поэтому ученому, который сделает это, гарантирована известность. В качестве примера исключительно полезного обобщения я приведу одно, сделанное в 1687 году английским ученым Исааком Ньютоном: «Ускорение, вызванное действием на тело несбалансированной силы, пропорционально величине этой силы, имеет то же направление, что и сила, и обратно пропорционально массе».
Математически обобщение очень просто выражается формулой
Второй закон движения (Ньютон сформулировал также первый и третий законы движения) можно применять ко всем движениям любого вида. И вы легко себе можете представить, что при выводе этого соотношения, связывающего ускорение, силу и массу, потребовались более тщательные наблюдения и более тонкая проницательность, чем при выводе обобщения «все, что подбрасывается, должно падать».
В этой книге мы коснемся группы наиболее фундаментальных из известных науке обобщений, которые включают в себя нечто противоположное движению — неизменность.
Столкновение бильярдных шаров
Сознательно или бессознательно мы доверчиво полагаемся на некоторые события, имеющие место потому, что определенные свойства окружающего мира мы считаем неизменными.
Например, знаток бильярда не без основания уверен в исходе своих ударов, если он точно ударяет шар своим кием (что следует ожидать, так как он хороший игрок), и в момент удара не происходит внезапного землетрясения или другой подобной неожиданности. Что делает его таким уверенным? Откуда он знает, что шары будут ложиться точно так, как он ожидает? Конечно, главная причина — опыт.
Поведение движущихся бильярдных шаров так регулярно, что после наблюдения нескольких сот или тысяч ударов игрок становится уверенным в своих ударах. Тем не менее вы можете всю жизнь играть на скачках или на бирже и никогда не сумеете точно предсказать, что случится в следующий момент, с той определенностью, с ка кой это сделает бильярдный игрок. Очевидно, движущиеся бильярдные шары представляют собой систему более простую, чем скачущие лошади или цены на бирже, и по-этому из поведения шаров легче сделать полезное обобщение.
Вообразите бильярдный шар, движущийся по поверхности стола самым простым образом, без каких-либо вращений, с постоянной скоростью 10
Значение такого обобщения в том, что оно исключает все виды случайностей из области возможного. Вы можете быть уверены, что ни один шар не будет двигаться быстрее определенного предела. Более того, если в такой системе из двух шаров известна скорость одного шара тем самым уже предопределена скорость другого. Но будет ли общая скорость «сохраняться» во всех случаях или только в том, который я только что описал?
Что будет, например, если шар ударит не покоящийся, а движущийся шар? Предположим, что один бильярдный шар движется со скоростью 10
Конечно, если скорость исчезает, вряд ли можно говорить, что она сохраняется, Чтобы говорить о сохранении скорости, необходимо, оказывается, рассматривать не только ее величину, но и направление движения предмета. Предположим, что скорость движения шара на север равна +10
В случае настоящих упругих бильярдных шаров ситуация иная. Каждый шар внезапно меняет направление движения. Шар, движущийся на север, отскакивает на юг, причем скорость его меняется от +10
Однако можно усложнить задачу. Что если движущийся бильярдный шар ударяет неподвижный, но не по центру? Что тогда?
Если вы когда-нибудь следили за игрой в бильярд, вы знаете ответ на этот вопрос: шары меняют направление. Неподвижный шар начинает двигаться налево (если удар был справа от центра), а шар, двигавшийся вначале, тоже меняет направление и начинает двигаться направо. При этом никогда не наблюдалось, чтобы оба шара двигались в одну сторону с первоначальным направлением.
Рассмотрим прямолинейное движение в двух измерениях (скажем, на плоской поверхности бильярдного стола). Такое движение всегда можно разложить на две
Вернемся теперь к нецентральному столкновению бильярдных шаров. Если прямолинейное движение каждого шара разложить на составляющие, окажется, что суммы вертикальных составляющих до и после столкновения равны. В случае, изображенном на рис. 2, начальная скорость движущегося шара равна 10
Сохранение импульса
Теперь вы, вероятно, начнете подозревать, что «сохранение суммарной скорости» будет иметь место при всех условиях. Подождите — мы еще не рассмотрели всевозможные ситуации.
Предположим, например, что шар ударяет о борт бильярдного стола и отскакивает назад. Стол, неподвижный до удара, остается таким же неподвижным и после него. Казалось бы, нет ничего, что могло бы скомпенсировать изменение скорости бильярдного шара. Если шар ударяется о борт «в лоб», его скорость
Почему же не годится наш закон «сохранения суммарной скорости»? Одна из причин в том, что мы рассматривали нереальные, слишком ограниченные условия. Все наши сталкивающиеся и отскакивающие бильярдные шары были одинакового размера. Ну а что, если рассмотреть шары разного размера или, выражаясь более точно, разной массы? Слово «масса» было использовано раньше, когда я дал определение второго закона движения Ньютона. Действительно, массу лучше всего определять с помощью второго закона. Масса есть отношение силы, приложенной к телу, к вызываемому ею ускорению.
Однако на поверхности Земли при обычных условиях масса тела пропорциональна его весу, поэтому массу обычно измеряют взвешиванием и с уверенностью можно сказать: чем больше вес, тем больше масса, и чем меньше вес, тем меньше масса. В метрической системе массу принято измерять в граммах.
Рассмотрим далее два шара: движущийся с массой 70 г и неподвижный — 35 г. Если 70-граммовый шар движется со скоростью 10
Оказывается, до и после соударения должна рассматриваться не скорость (или ее составляющие), а
Понял и доказал, что сохраняется именно импульс, английский математик Джон Уоллис в 1671 году.
Подставьте вместо скорости импульс, и то, что раньше приводило в тупик, сразу становится понятным. Толкните баскетбольный мяч носком ноги, и он начнет двигаться с определенной скоростью. Толкните точно так же пушечное ядро, и оно начнет двигаться гораздо медленнее. Однако обоим этим телам передан один и тот же импульс. Недостаток скорости ядра компенсируется его массой.
Предположим, что заряженное ружье подвешено на проволоке к потолку. Легким прикосновением к спусковому крючку заставим его выстрелить. Пуля вылетит из дула с некоторой скоростью. Мгновение перед этим она покоилась, теперь же она движется очень быстро, скажем, направо: Чтобы скомпенсировать это движение, ружье должно двигаться налево. Если бы действовало правило сохранения скорости, то ружье стало бы двигаться налево с такой же скоростью, с какой пуля движется направо, но каждый, кто видел этот эксперимент, знает, что это не так. Сохраняется именно импульс, т. е. произведение скорости на массу. Ружье имеет гораздо большую массу, чем пуля, и движется соответственно медленнее. Теперь ответим на вопрос о бильярдном шаре, ударяющем о борт стола. При ударе шар меняет свой импульс. Противоположным образом должен изменить свой импульс стол. Однако бильярдный стол имеет гораздо большую массу, чем шар, и изменение его импульса, требует гораздо меньшего изменения скорости. На самом деле стол связан с поверхностью Земли (трением или еще каким-нибудь образом), так что в действительности, чтобы сбалансировать изменение импульса шара, свой импульс меняет Земля. Но Земля имеет такую огромную массу, что балансирующее изменение ее движения чрезвычайно мало и поэтому незаметно. Можно представить себе поразительную картину того, как подпрыгивает мяч. Когда мяч падает вниз, Земля поднимается ему навстречу, а когда он подпрыгивает вверх, Земля снова опускается вниз. Короче, Земля подскакивает вместе с мячом, но тем меньше, чем масса ее больше массы шара. Поскольку Земля имеет гигантскую массу, не удивительно, что ее колебания и мириады других ее движений, балансирующих все движения на ее поверхности, проходят незамеченными.
Подобным образом можно объяснить и тот факт, что любой движущийся вдоль длинной плоской поверхности предмет в конце концов останавливается. Его импульс не исчезает, Земля постепенно получит этот импульс с помощью трения. Когда автомобиль трогается и разгоняется до большой скорости, его резиновые шины отталкиваются от Земли, которая движется в противоположном направлении, но в силу своей огромной массы с пренебрежимо малой скоростью. Каждый, кто пытался завести и стронуть с места стоящий на льду автомобиль, когда резиновые шины не могут передать импульс Земле, знает, что автомобиль не двинется без такой передачи.
Из-за незаметного изменения движения Земли кажется, что импульс не сохраняется. Рассмотрев приведенные примеры, мы чувствуем некоторую уверенность, возводя обобщение в ранг
Под замкнутой системой мы подразумеваем любое тело или совокупность тел, на которые никоим образом не влияют окружающие условия. В действительности, никакая совокупность тел, строго говоря, не изолирована, и закон сохранения импульса считают абсолютно верным только для всей Вселенной. Однако системы, меньшие чем Вселенная, часто рассматриваются с достаточной точностью практически изолированными. Например бильярдные шары вместе со столом, киями и игроками можно считать изолированной системой, пока во время игры не произойдет землетрясение или, преследуя шар, на стол не прыгнет хозяйский кот и т. п.
Важно понять, что закон сохранения импульса (подобно всем другим законам сохранения, которые я буду упоминать в книге), является результатом экспериментальных наблюдений, а не логических выводов. Точнее говоря, нельзя утверждать, что импульс должен сохраняться при всех условиях. Импульс сохраняется при всех условиях, которые когда-либо наблюдались, и с той степенью точности, с которой его измеряли.
В таком случае, имеем ли мы право утверждать, что закон никогда не нарушается? Все, чем мы располагаем, — это наш опыт, а он может быть недостаточным В начале главы казалось, что существует закон сохранения скорости, но когда опыт расширился, он сам собой отпал. Случится ли что-либо подобное с законом сохранения импульса? Если не сейчас, то когда-нибудь? Да, конечно, может случиться. В последние годы некоторые важные законы сохранения неожиданно перестали существовать. (Позднее я опишу один такой случай.)
Тем не менее, когда наблюдается явление, которое как кажется на первый взгляд, доказывает несостоятельность важного обобщения, ученым следует тщательно изучить это явление. Нельзя ли его интерпретировать так, чтобы оно не противоречило закону? Если это можно сделать, тем лучше.
Но в случае закона сохранения импульса с ним согласуется множество наблюдений, начиная с космических звездных систем и кончая микросистемами субатомных частиц, и ученым в самом деле трудно согласиться с каким-либо его нарушением. Они готовы принять почти любое объяснение нарушения закона, лишь бы спасти обобщение. Закон сохранения импульса оказался так не-обыкновенно полезен на протяжении приблизительно трех столетий, что ученые, естественно, стремятся сохранить его.
Сохранение момента количества движения
Движение не обязательно должно представлять собой изменение положения. Если бильярдный шар быстро вращается, не трогаясь с места, было бы несправедливо считать такой шар неподвижным. Кроме того, шар может двигаться по прямой линии и одновременно вращаться. Любое тело, которое движется по окружности или вращается вокруг своей оси (например, Земля вращается вокруг своей оси и вокруг Солнца), обладает
Предположим, вы стоите на вращающемся столе, держа свои гири у туловища и делая два оборота в секунду. Выпрямите руки с гирями насколько возможно. Внезапно ваша угловая скорость уменьшится, и вы будете двигаться со скоростью, возможно, не более одного оборота в секунду. Прижмите руки опять к туловищу — и угловая скорость станет прежней.
Что же случилось? Ведь общая масса на столе не изменилась от того, что вы вытянули руки! Тогда почему же изменилась угловая скорость? Она должна измениться в ответ на определенные изменения в системе, зависящие не от величины массы. Логично предположить, что в момент количества движения входит расстояние массы от оси вращения. Расстояние части массы (ваших рук с гирями в них) от оси вращения увеличилось. Если это расстояние входит в момент количества движения, следует ожидать уменьшения угловой скорости, компенсирующего увеличение расстояния. Когда руки и гири опять прижаты к туловищу, их расстояние от оси вращения снова уменьшается и угловая скорость увеличивается, компенсируя это уменьшение.
Можно утверждать, что момент количества движения сохраняется, если его определять как произведение массы, угловой скорости и квадрата среднего расстояния массы от оси вращения. Тогда закон сохранения момента количества движения, нарушения которого никто никогда не наблюдал, можно сформулировать так:
Я говорю «суммарный момент количества движения» поскольку угловая скорость, так же как линейная, может иметь разные направления. Различают направление вращения
Если два одинаковых шара вращаются вокруг своей оси со скоростью 10 оборотов в секунду, но один по часовой стрелке, а другой — против, то суммарная угловая скорость такой системы равна нулю. Поскольку шары имеют одинаковую массу, форму и строение, суммарный момент количества движения системы тоже равен нулю. Шары могут столкнуться так, что вращение одного погасит вращение другого. После соударения оба шара не вращаются, и момент количества движения системы снова равен нулю.
Можно считать, что в невращающейся системе одна часть вращается по часовой стрелке, а другая — против и эти движения компенсируют друг друга.
Важно помнить, что, несмотря на аналогию в названиях и проявлениях, законы сохранения импульса и момента количества движения действуют совершенно независимо друг от друга. Нельзя прямолинейное движение замкнутой системы заменить вращением по часовой стрелке или наоборот; во всяком случае, никто никогда подобное превращение не наблюдал.
Глава 2. Энергия
Сохранение массы
При рассмотрении импульса мы имели дело с тремя величинами: скоростью, массой и их произведением, т. е. самим импульсом.
С точки зрения сохранения мы рассмотрели две из них: импульс, который сохраняется, и скорость, которая не сохраняется. А что происходит с третьей величиной — массой? Если наблюдать некоторые явления эпизодически, покажется, что существуют явные доказательства несохранения массы. Дерево сгорает, оставляя после себя пепел, имеющий гораздо меньшую массу. Большая часть массы дерева как бы исчезает. Если полностью сжечь свечу, масса ее тоже исчезнет. С другой стороны, если кусок железа полностью съедает ржавчина, образовавшаяся масса значительно больше первоначальной. Кажется, что масса возникла из ничего. Но масса — неотъемлемое свойство вещества, иметь одно без другого нельзя, следовательно, процессы сгорания или ржавления можно считать доказательством исчезновения или появления вещества.
Однако закон сохранения массы нельзя проверить в открытой системе. Мы обнаружили это, когда пытались объяснить поведение бильярдного шара, отскакивающего от борта, не принимая в расчет изменение импульса самого стола.
Ясно, что сгоревшее бревно, свеча или съеденное ржавчиной железо представляют собой открытую систему, так как на них сильно воздействует окружающая среда. По мере сгорания бревна или свечи возникают газы и пары, которые смешиваются с атмосферой Земли. Конечно, следует также рассмотреть их массу, прежде чем сделать какие-нибудь выводы о сохранении массы. Процесс ржавления гораздо более тонкий. По-видимому, некоторая часть воздуха соединяется в процессе ржавления с железом, следовательно, надо учесть массу воздуха прежде чем решить, сохраняется масса или нет.
Вплоть до XVIII столетия химики обычно неправильно оценивали материальную природу воздуха и газов. Они считали, что газы не имеют массы или она очень мала и ею можно пренебречь. Тем не менее XVIII век стал свидетелем грандиозных работ по исследованию свойств газов. Стало ясно, что при рассмотрении некоторых явлений нельзя не учитывать газы. Перелом наступил с появлением теории французского химика Антуана Лавуазье, который описал свои выводы в учебнике химии, опубликованном в 1789 году [4].
Химические реакции сгорания и ржавления Лавуазье провел в закрытых сосудах, из которых не испарялись газы и в которые не проникал воздух. Масса не могла ни проникнуть в систему, ни выйти из системы, которая была таким образом замкнута. Лавуазье взвесил сосуд с eё содержимым до и после реакции. При той точности, которую обеспечивали измерительные приборы, он не обнаружил изменения массы. Его результаты подтвердили другие экспериментаторы, которые использовали все более и более точные методы измерения массы. Измерения, сделанные в самом начале XX столетия, показали, что масса остается постоянной, по крайней мере с точностью до стомиллионной.
Итак, Лавуазье установил
Масса отличается от других «сохраняющихся» величин одним важным свойством. Импульс и момент количества движения —
Однако масса —
Закон сохранения массы формулируют следующим образом:
Сохранение энергии
Скорость входит не только в импульс. Движущееся пушечное ядро разобьет каменную стену, хотя такое же ядро, но неподвижное ничего не сделает со стенкой, даже соприкасаясь с ней. Движущееся пушечное ядро совершает
Все, что способно совершать работу, является формой
Энергия превращается не только в работу, но и в другие формы энергии. Электрический ток вызывает магнетизм, в лампе накаливания — свет и тепло, в двигателе — кинетическую энергию. Химическая энергия, дающая возможность дереву сгореть, превращается во время этого процесса в тепло и свет, а химический взрыв заставляет предметы лететь и таким образом переходит в кинетическую энергию. Кинетическая энергия благодаря трению превращается в тепло, а если трение используют для зажигания спички, тепло преобразуется в свет. Когда заряжается аккумуляторная батарея, электрическая энергия переходит в химическую; когда она разряжается, происходит обратный процесс.
В этом отношении тепло занимает особое место. Любая другая форма энергии при определенных условиях полностью преобразуется в тепловую. Однако тепло не может превратиться в любую другую форму энергии полностью. Часть энергии всегда остается в виде тепла. Более того, если одна форма нетепловой энергии переходит в другую, это превращение никогда не происходит полностью: некоторая часть энергии всегда переходит в тепло. Следовательно, энергию удобно подразделять на тепловую и все другие формы, включая работу. Поэтому неудивительно, что тепло требует специального рассмотрения и имеет даже собственную единицу измерения. (Не надо забывать, что тепло было тщательно изучено еще до того, как его отнесли к формам энергии.) Единица тепла —
Более распространенная единица энергии, которая чаще всего используется для других ее форм, составлена из грамма, сантиметра и секунды. Если выразить энергию как
Теперь можно задать один важный вопрос. Когда определенное количество какой-нибудь нетепловой энергии полностью превращается в тепловую, всегда ли выделяется одно и то же количество тепла? Всегда ли
Необходимые эксперименты провел в сороковых годах XIX века английский физик Джеймс Джоуль. Он пытался превратить энергию в тепло самыми разными способами, например: заставлял двигаться воду или ртуть с помощью колеса с лопастями, сжимал воздух, пропускал воду через узкие трубки, вращал проволочную катушку между полюсами магнита, пропускал через проволоку электрический ток. В каждом случае он измерял потраченную энергию и выделенное тепло. Даже во время своего медового месяца Джоуль не смог побороть искушения измерить температуру вверху и внизу водопада, чтобы узнать, сколько тепла выделяет энергия падающей воды. К 1847 году он установил, что данное количество нетепловой энергии любого вида всегда производит одинаковое количество тепла.
Впоследствии это было подтверждено несчетное число раз, и теперь мы можем сказать, что 41 800 000
В то же самое десятилетие два немецких физика Юлиус Роберт Майер и Герман Людвиг фон Гельмгольц независимо друг от друга привели ряд аргументов в пользу сохранения энергии. Подкрепленные опытами Джоуля, эти аргументы стали в конце концов убедительными. Так был установлен
Подобно массе и в отличие от импульса энергия — скалярная величина. Она бывает больше или меньше, но нет положительной или отрицательной энергии.
Предположим, например, что два пушечных ядра одинаковой массы летят навстречу друг другу с одинаковой скоростью. Их импульсы равны и противоположны, так что общий импульс двух ядер равен нулю. Если ядра столкнутся неупруго, они сплющатся и упадут на землю. Но оба ядра обладали кинетической энергией, а она не может исчезнуть. Однако однажды столкнувшись, ядра больше не движутся. Что же случилось с кинетической энергией? Она превратилась в другую форму энергии — тепловую. В результате столкновения ядра так нагреваются, что могут частично расплавиться. Следовательно, правильнее говорить о полной энергии, а не о суммарной и закон сохранения энергии формулировать так:
Закон всемирного тяготения
Я опять хочу подчеркнуть, что законы сохранения, которые были описаны, в действительности не «законы», а просто обобщения. Производя разнообразные измерения, ученые убеждались каждый раз, что импульс, момент количества движения, масса и энергия системы, которая кажется замкнутой, остаются постоянными при любых изменениях в системе. Тогда они сделали широкое обобщение, что данные этих измерений всегда остаются постоянными при всех условиях. Но слова «всегда» и «при всех условиях» — предательские слова. Знаем ли мы на самом деле, что происходит «всегда» и «при всех условиях»? Но даже если упорно продолжать верить в справедливость этого обобщения на Земле, будет ли верно оно для внеземных условий? Наши измерения «сохраняющихся» величин сделаны на Земле, в земных условиях. Не очень хорошо переходить от измерений к предположению о том, что происходит «всегда» и «при всех условиях на Земле. И совсем плохо предполагать, что слова всегда» и «везде» справедливы для всей Вселенной, условия в которой могут невероятно отличаться от земных.
Будет ли сохраняться энергия в условиях вакуума космического пространства? Сохраняется ли энергия при сверхвысоких температурах внутри звезд, температурах, которые нельзя воспроизвести в лаборатории?
В древности философы считали само собой разумеющимся, что «законы природы» не одни и те же во Вселенной: одни — для Земли, другие — для неба. Казалось, что для этого были все основания. На Земле тела падают вниз, а небесные тела движутся по неизменным орбитам и никогда не падают. На Земле тела меняются, разлагаются, умирают, а в небе нельзя заметить каких-либо изменений; Солнце такое же светлое и яркое, как и вчера и вообще на всей памяти человечества.